首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We apply strong magnetic fields of H=28.5 to 43 T to suppress superconductivity (SC) in the cuprates Bi2Sr2-xLaxCuO6+delta (x=0.65, 0.40, 0.25, 0.15, and 0), and investigate the low temperature (T) normal state by 63Cu nuclear spin-lattice relaxation rate (1/T1) measurements. We find that the pseudogap (PG) phase persists deep inside the overdoped region but terminates at x approximately 0.05, which corresponds to the hole doping concentration of approximately 0.21. Beyond this critical point, the normal state is a Fermi liquid that persists as the ground state when superconductivity is removed by the magnetic field. A comparison of the superconducting state with the H-induced normal state in the x=0.40 (Tc=32 K) sample indicates that there remains substantial part of the Fermi surface even in the fully developed PG state, which suggests that the PG and SC are coexisting matters.  相似文献   

2.
The possibility of interpreting the normal pseudogap state of cuprates as a result of the formation of spin and charge structures is investigated for solutions of the Hubbard model of a finite 2D cluster based on the mean field method. The iterative self-consistency procedure reduces the initial uncorrelated spin distributions to stable structures. The Fourier components of the charge and spin distributions in such structures have peaks for characteristic incommensurate quasi-momenta depending on the doping. It is shown that for any doping, the density of states of the system has a sharp minimum (pseudogap) at the Fermi level. This emergence of the gap just at the Fermi level is a property typical of not only the superconducting state, but also the normal state of spin glasses. The characteristics of the Fermi surface averaged over the implemented structures and the properties of quasiparticles in the nodal and antinodal regions of the quasi-momentum are considered.  相似文献   

3.
We present finite temperature (T) extension of the (2+1)-dimensional QED (QED3) theory of under-doped cuprates. The theory describes nodal quasiparticles whose interactions with quantum proliferated hc/2e vortex-antivortex pairs are represented by an emergent U(1) gauge field. Finite T introduces a scale beyond which the spatial fluctuations of vorticity are suppressed. As a result, the spin susceptibility of the pseudogap state is bounded by T2 at low T and crosses over to approximately T at higher T, while the low-T specific heat scales as T2, reflecting the thermodynamics of QED3. The Wilson ratio vanishes as T-->0; the pseudogap state is a "thermal (semi)metal" but a "spin-charge dielectric." This non-Fermi liquid behavior originates from two general principles: spin correlations induced by "gauge" interactions of quasiparticles and fluctuating vortices and the "relativistic" scaling of the T=0 fixed point.  相似文献   

4.
We presented the recent Hall effect data for a number of carriers in La(2-x)Sr(x)CuO4 as the sum of two components: the temperature independent term n0(x), which is due to external doping, and the thermally activated contribution. Their balance determines the crossover temperature T*(x) from the marginal Fermi liquid to pseudogap regime. The activation energy Delta(x) for thermally excited carriers equals the energy between the Fermi surface "arc" and the band bottom, as seen in angle-resolved photoemission spectroscopy experiments. Other implications for the (T, x)-phase diagram of cuprates are also discussed.  相似文献   

5.
In this article I give a pedagogical illustration of why the essential problem of high-T c superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by doping. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon doping, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite doping, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature ??strange metal phase?? of the doped Mott insulator.  相似文献   

6.
The Fermi surface topologies of underdoped samples of the high-T(c) superconductor Bi2Sr2CaCu2O(8+δ) have been measured with angle resolved photoemission. By examining thermally excited states above the Fermi level, we show that the observed Fermi surfaces in the pseudogap phase are actually components of fully enclosed hole pockets. The spectral weight of these pockets is vanishingly small at the magnetic zone boundary, creating the illusion of Fermi "arcs." The area of the pockets as measured in this study is consistent with the doping level, and hence carrier density, of the samples measured. Furthermore, the shape and area of the pockets is well reproduced by phenomenological models of the pseudogap phase as a spin liquid.  相似文献   

7.
We report neutron scattering studies on two single crystal samples of the electron-doped (n-type) superconducting (SC) cuprate Nd2-xCexCuO4 (x=0.15) with T(c)=18 and 25 K. Unlike the hole-doped (p-type) SC cuprates, where incommensurate magnetic fluctuations commonly exist, the n-type cuprate shows commensurate magnetic fluctuations at the tetragonal (1/2 1/2 0) reciprocal points both in the SC and in the normal state. A spin gap opens up when the n-type cuprate becomes SC, as in the optimally doped p-type La2-xSrxCuO4. The gap energy, however, increases gradually up to about 4 meV as T decreases from T(c) to 2 K, which contrasts with the spin pseudogap behavior with a T-independent gap energy in the SC state of p-type cuprates.  相似文献   

8.
We have measured the charge dynamics in the vortex state of La(2-x)Sr(x)CuO(4) by femtosecond time-resolved reflectance, which we demonstrate to be a direct probe of low-energy quasiparticle states. Application of a c-axis magnetic field induces regions surrounding vortex cores that display pseudogap charge dynamics. We determine the characteristic width approximately 130 A in optimally doped material and we show that it increases with decreasing doping. These results confirm a new experimental method of probing the microscopic properties of vortices in the cuprates.  相似文献   

9.
Doping evolution of the Fermi surface topology of Na(x)CoO(2) is studied systematically. Both local density approximation (LDA) and local spin density approximation (LSDA) predict a large Fermi surface as well as small hole pockets for doping levels x approximately 0.5. In contrast, the hole pockets are completely absent for all doping levels within LSDA+U. More importantly, we find no violation of Luttinger's rule in this system. The measured Fermi surface of Na(0.7)CoO(2) can be explained by its half-metallic behavior and agrees with our LSDA+U calculations.  相似文献   

10.
The properties of Fermi surfaces and electron bands in electron-doped cuprates have been studied. The possible origins of a hole pocket in the nodal direction and a pseudogap at hot spots are discussed, including stripe phases and double bands in an antiferromagnetically correlated Fermi liquid. Within the framework of the mean field method, it is shown that both t-t′-t″-U Hubbard model solutions with a homogeneous antifer-romagnetic spin structure and those with a diagonal stripe structure can reproduce the fragmentar character of the Fermi surface. The appearance of hole pockets in various structures is related either to states in the lower Hubbard band or to states localized on domain walls. The behavior of a gap at the leading edge of the energy distribution of photoelectrons and its dependence on oxygen removal in the course of annealing are considered.  相似文献   

11.
In cuprates, in a view where pairing correlations set in at the pseudogap energy scale T* and acquire global coherence at a lower temperature Tc, the regionT c⪯ T ⪯ T* is a vast fluctuation regime.T c andT* vary differently with doping and the question remains about the doping trends of the relevant magnetic field scales: the field Hc2 bounding the superconducting response and the pseudogap closing field Hpg. In-plane thermal (Nernst) and our interlayer (tunneling) transport experiments in Bi2Sr2CaCu2O8+y report hugely different limiting magnetic fields. Here, based on pairing (and the uncertainty principle) combined with the definitions of the Zeeman energy and the magnetic length, we show that both fields convert to the same pseudogap scaleT* upon transformation as orbital and Zeeman critical fields, respectively. The region of superconducting coherence is confined to the ‘dome’ that coincides with the usual unique upper critical field Hc2 on the strongly overdoped side. We argue that the distinctly different orbital and the Zeeman limiting fields can co-exist owing to charge and spin degrees of freedom separated to different parts of the strongly anisotropic Fermi surface.  相似文献   

12.
We report the results of the Knight shift by ?3,??Cu-NMR measurements on single-layered copper-oxide Bi?Sr(?-x)La(x)CuO(?+δ) conducted under very high magnetic fields up to 44 T. The magnetic field suppresses superconductivity completely, and the pseudogap ground state is revealed. The ?3Cu-NMR Knight shift shows that there remains a finite density of states at the Fermi level in the zero-temperature limit, which indicates that the pseudogap ground state is a metallic state with a finite volume of Fermi surface. The residual density of states in the pseudogap ground state decreases with decreasing doping (increasing x) but remains quite large even at the vicinity of the magnetically ordered phase of x ≥ 0.8, which suggests that the density of states plunges to zero upon approaching the Mott insulating phase.  相似文献   

13.
Fermi surface models applied to the underdoped cuprates predict the small pocket area to be strongly dependent on doping whereas quantum oscillations in YBa(2)Cu(3)O(6+x) find precisely the opposite to be true--seemingly at odds with the Luttinger volume. We show that such behavior can be explained by an incommensurate antinodal Fermi surface nesting-type instability--further explaining the doping-dependent superstructures seen in cuprates using scanning tunneling microscopy. We develop a Fermi surface reconstruction scheme involving orthogonal density waves in two dimensions and show that their incommensurate behavior requires momentum-dependent coupling. A cooperative modulation of the charge and bond strength is therefore suggested.  相似文献   

14.
Monte Carlo simulations applied to a model of interacting fermions and classical spins show the existence of antiferromagnetic spin domains and charge stripes upon hole doping. The stripes have a filling of approximately 1/2 hole per site, and they separate spin domains with a pi phase shift among them. The observed stripes run either along the x or y axes. No particular boundary conditions or external fields are needed to stabilize these structures. When magnetic incommensurate peaks are observed at momentum pi(1,1-delta), charge incommensurate peaks appear at (0,2delta). The charge fluctuations responsible for the stripe formation also induce a pseudogap in the density of states.  相似文献   

15.
Self-consistent calculation of spin (charge) density wave (S(C)DW) order parameters have been performed for bilayered cuprates on the basis of a singlet-correlated band model. Evolution of the Fermi surface in the strongly underdoped regime is described by a two-band approach. The smooth development of the pseudogap formation temperature from underdoped to overdoped states is explained and the Fourier amplitudes 〈sq〉 (spin) and 〈eq〉 (charge) modulations are calculated. We have found a maximum of the incommensurability for doping 0.09 ÷ 0.11 holes per copper site.  相似文献   

16.
Since the discovery of the cuprate high-temperature superconductivity in 1986, a universal phase diagram has been constructed experimentally and numerous theoretical models have been proposed. However, there remains no consensus on the underlying physics thus far. Here, we theoretically investigate the phase diagram of hole-doped cuprates based on an itinerant-localized dual fermion model, with the charge carriers doped on the oxygen sites and localized holes on the copper d x2 ? y2 orbitals. We analytically demonstrate that the puzzling anomalous normal state or the strange metal could simply stem from a free Fermi gas of carriers bathing in copper antiferromagnetic spin fluctuations. The short-range high-energy spin excitations also act as the “magnetic glue” of carrier Cooper pairs and induce d-wave superconductivity from the underdoped to overdoped regime, distinctly different from the conventional low-frequency magnetic fluctuation mechanism. We further sketch out the characteristic dome-shaped critical temperature T c versus doping level. The emergence of the pseudogap is ascribed to the localization of partial carriers coupled to the local copper moments or a crossover from the strange metal to a nodal Kondo-like insulator. Our work provides a consistent theoretical framework to understand the typical phase diagram of hole-doped cuprates and paves a distinct way to the studies of both non-Fermi liquid and unconventional superconductivity in strongly correlated systems.  相似文献   

17.
In this paper a mean-field theory for the spin-liquid paramagnetic non-superconducting phase of the p- and n-type high-Tc cuprates is developed. This theory applied to the effective t-t'-t′′-J* model with the ab initio calculated parameters and with the three-site correlated hoppings. The static spin-spin and kinematic correlation functions beyond Hubbard-I approximation are calculated self-consistently. The evolution of the Fermi surface and band dispersion is obtained for the wide range of doping concentrations x. For p-type systems the three different types of behavior are found and the transitions between these types are accompanied by the changes in the Fermi surface topology. Thus a quantum phase transitions take place at x = 0.15 and at x = 0.23.Due to the different Fermi surface topology we found for n-type cuprates only one quantum critical concentration, x = 0.2. The calculated doping dependence of the nodal Fermi velocity and the effective mass are in good agreement with the experimental data.  相似文献   

18.
A theory of the anomalous omega/T scaling of the dynamic magnetic response in cuprates at low doping is presented. It is based on the memory function representation of the dynamical spin susceptibility in a doped antiferromagnet where the damping of the collective mode is constant and large, whereas the equal-time spin correlations saturate at low T. Exact diagonalization results within the t-J model are shown to support assumptions. Consequences, for both the scaling function and the normalization amplitude, are well in agreement with neutron scattering results.  相似文献   

19.
We measure the normal-state in-plane resistivity of Bi(2)Sr(2-x)La(x)CuO(6+delta) single crystals at low temperatures by suppressing superconductivity with 60 T pulsed magnetic fields. With decreasing hole doping, we observe a crossover from a metallic to an insulating behavior in the low-temperature normal state. This crossover is estimated to occur near 1/8 doping, well inside the underdoped regime, and not at optimum doping as reported for other cuprates. The insulating regime is marked by a logarithmic temperature dependence of the resistivity over two decades of temperature, suggesting that a peculiar charge localization is common to the cuprates.  相似文献   

20.
We calculate spectral functions within the t-J model as relevant to cuprates in the regime from low to optimum doping. On the basis of equations of motion for projected operators an effective spin-fermion coupling is derived. The self-energy due to short-wavelength transverse spin fluctuations is shown to lead to a modified self-consistent Born approximation, which can explain strong asymmetry between hole and electron quasiparticles. The coupling to long-wavelength longitudinal spin fluctuations governs the low-frequency behavior and results in a pseudogap behavior, which at low doping effectively truncates the Fermi surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号