首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Russian Chemical Bulletin - A facile approach to the preparation of magnetic nanoparticles based on the oxide or oxide-hydroxide of chemically inert iron species (Fe3+ ions) stabilized with a...  相似文献   

2.
By co-deposition maghemite particles doped with Sm3+ are obtained with the average particle size within 9.9-10.9 nm. Samarium is shown to be present mainly in the near-surface layer of nanoparticles. It is found that the functionalization of the maghemite nanoparticle surface by organic molecules does not deteriorate their magnetic properties.  相似文献   

3.
Polyaniline coated silica/maghemite nanoparticles (PANI/SiO2/γ-Fe2O3 composites) were synthesized by the combination of a sol-gel process and an in-situ polymerization method, in which ferrous and ferric salts as well as tetraethyl orthosilica (TEOS) acted as the precursor for γ-Fe2O3 and silica, respectively. As a result, the SiO2/γ-Fe2O3 particle showed a core-shell structure, with γ-Fe2O3 as the magnetic core and silica as the shell of the particle. The shell thickness can be controlled by changing the TEOS concentration. The PANI/SiO2/γ-Fe2O3 composites revealed a multilayer core-shell structure, where PANI is the outer shell of the composite. The doping level and the conductivity of PANI/SiO2/γ-Fe2O3 composites decreased with increasing the TEOS content due to the presence of the less coated PANI on the SiO2/γ-Fe2O3 core at higher TEOS content. For a SQUID analysis at room temperature, all γ-Fe2O3 containing composites showed a typical superparamagnetic behavior. The saturation magnetization of SiO2/γ-Fe2O3 nanoparticles decreased with increasing the TEOS content due to the increase in silica shell thickness, while the saturation magnetization of PANI/SiO2/γ-Fe2O3 composites also decreased with increasing the TEOS content, which is attributed to the lower conductivity of PANI in the composites at higher TEOS content.  相似文献   

4.
Novel γ-Fe2O3@APTES@rGO composites are successfully synthesized by using graphene oxide and silanized maghemite nanoparticles. Graphene oxide and maghemite were obtained by Hummers and Massart methods, respectively. The silanization process was done to functionalize maghemite surface with a controllable quantity of amino groups. Then, by adding aqueous graphene oxide suspension, the bonding between graphene oxide and silanized maghemite nanoparticles was done in refluxing conditions. Afterwards, chemical reduced graphene oxide reaction was realized by addition of hydrazine solution. The characterization of γ-Fe2O3@APTES@rGO composites was studied by X-ray Diffraction, Fourier Transformed Infrared Spectroscopy, thermogravimetric analysis and scanning electron microscopy.  相似文献   

5.
Adsorption of trimethyl phosphate (TMP) on well-characterized hematite, maghemite and goethite nanoparticles was studied by in situ DRIFT spectroscopy as a model system for adsorption of organophosphorous (OP) compounds on iron minerals. The iron minerals were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), specific surface area, and pore size distribution. The minerals were found to consist of stoichimetrically and morphologically well-defined maghemite, hematite, and goethite nanoparticles. Analysis of in situ diffuse reflectance Fourier transform (DRIFT) spectroscopy shows that TMP bonds mainly to Lewis acid Fe sites through the O phosphoryl atom (-P═O-Fe) on hematite and maghemite. On goethite most TMP molecules bond to Br?nstedt acid surface OH groups and form hydrogen bonded surface complexes. The vibrational mode analysis and uptake kinetics suggest two main reasons for the observed trend of reactivity toward TMP (hematite > maghemite > goethite): (i) larger number of accessible Lewis acid adsorption sites on hematite; (ii) stronger interaction between the Lewis acid Fe sites and the phosphoryl O atom on TMP for hematite and maghemite compared to goethite with concomitant formation of surface coordinated TMP and dimethyl phosphate intermediates. As a result, on the oxides a surface oxidation pathway dominates during the initial adsorption, which results in the formation of surface methoxy and formate. In contrast, on goethite a slower hydrolysis pathway is identified, which eventually yields phosphoric acid. The observed trends of the reactivity and analysis of the corresponding surface structure and particle morphology suggest an intimate relation between the surface chemistry of exposed crystal facets on the iron minerals. These results are important to understand OP surface chemistry on iron minerals.  相似文献   

6.
DMSA-coated Fe3O4 nanoparticles were synthesized by wet-chemical method. The chemical interaction between Fe3O4 and DMSA were investigated by FTIR. They were directly radiolabeled with 99mTc radioisotope (Fe3O4@DMSA–99mTc) at room temperature in the presence of stannous solution as a reducing agent. Magnetic and structure properties of Fe3O4@DMSA–99mTc nanoparticles were investigated by AGFM, TEM, and XRD. Biodistribution and toxicity assessment of Fe3O4@DMSA–99mTc were studied in mice by intravenous and intraperitoneally injections, respectively. Blood, kidney, and liver factors were measured 4 days post injection and at the mean-while tissue sections were prepared from their kidney and liver. The results indicate that, the Fe3O4@DMSA–99mTc nanoparticles were passed through the membrane of different cells but do not create any disorder in the kidney and liver function even in high doses such as 300 mg/kg.  相似文献   

7.
A magnetically recoverable catalyst consisting of copper nanoparticles (CuNPs) on nanosized silica-coated maghemite is presented. The catalyst has been prepared under mild conditions by mixing the magnetic support with a freshly prepared suspension of CuNPs obtained by fast reduction of anhydrous CuCl2 with lithium sand and a catalytic amount of DTBB (4,4′-di-tert-butylbiphenyl) as electron carrier. This copper-based catalyst has shown to be very efficient in the N-(hetero)arylation of imidazole using (hetero)aryl bromides and iodides as arylating agents under ligand-free conditions. The catalyst is easily recovered by means of an external magnet and can be reutilized in three N-arylation cycles without apparent loss of catalytic activity.  相似文献   

8.
We report on a simple methodology that facilitates the generation of surface-grafted assemblies comprising block copolymers with tunable composition and molecular weight gradients along flat solid substrates.  相似文献   

9.
10.
The aim of this work was to investigate the formation of J-aggregates of thiacyanine dye (TC, 5,5′-disulfopropyl-3,3′-dichlorothiacyanine sodium salt) in the presence of 6 nm spherical silver nanoparticles (Ag NPs) using spectrophotometric and fluorescence methods. The formation of J-aggregates was concentration dependent and characterized by the appearance of the new absorption band with the maximum at 481 nm. Spectrophotometric study of J-aggregate formation and time stability suggested that they were formed on the account of monomer form of TC. Moreover, the stability of J-aggregates increased with the lowering AgNPs concentration. The measurements of fluorescence of the NPs—dye assembly clearly indicated that the fluorescence of TC was quenched by Ag NPs on the concentration dependent manner. The spectrophotometric and fluorescence properties of NPs—dye assembly were found to be quantitatively related to the surface coverage of the dye on the Ag NPs.  相似文献   

11.
A simple, rapid, one-step synthesis way of pure iron oxide nanoparticles: magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3) was investigated. Nanoparticles were prepared by microwave synthesis, from ethanol/water solutions of chloride salts of iron (FeCl2 and FeCl3) in the presence of sodium hydroxide NaOH. X-ray powder diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize these nanoparticles.  相似文献   

12.
The pulsed laser induced phase transition of gold nanoparticles in aqueous solution was observed via a transient absorption on nanosecond time scales and longer. Gold nanoparticles were excited with an intense picosecond laser pulse (355 nm, 30 ps), and the subsequent changes were monitored using two continuous wave laser wavelengths (488 and 635 nm). On the nanosecond time scale, below 6.3 mJ cm(-2), no change was observed; however, in the low fluence region between 6.3 and 17 mJ cm(-2), gold nanoparticles produced a bleach signal (488 nm) attributed to the melting of the gold nanoparticles, which decreased linearly with increasing laser fluence. Laser fluences above 17 mJ cm(-2) resulted in a strong absorption at both wavelengths, which is ascribed to vaporization of gold nanoparticles rather than solvated electrons (ejected from gold nanoparticles) or light scattering. The decay of both signals was faster than the 5 ns time resolution used in our experimental system. On the microsecond time scale, increase in absorbance at 635 nm was observed with a time constant of 1.0 micros, while no change was observed at 488 nm. It is considered that this increase is attributed to the formation of smaller gold nanoparticles resulting from pulsed laser induced size reduction of initial gold nanoparticles.  相似文献   

13.
A magnetically separable zirconium Schiff base nanocatalyst was synthesized under ultrasonic agitation. TEM images revealed a uniform spherical particle shape with average size of 10–14 nm for the as-prepared catalyst. The catalytic performance of ZrOL2@SMNP in the heterogeneous condensation of various 1,2-diamines and 1,2-dicarbonyls for the synthesis of heterocyclic compounds in ethanol has been explored.  相似文献   

14.
15.
16.
Meso-2,3-dimercaptosuccinic acid (DMSA) forms stable complexes with a remarkable wide range of metal ions. This relatively small molecule has attracted increasing attention in the field of radiopharmacy, treatment of heavy metal intoxications and nanoparticles preparation. In this review detailed summary of all physical, chemical and biological properties of DMSA and its complex compounds with 99mTc, 186/188Re, 166Ho, 177Lu and 90Y is provided. The clinical utilisation of DMSA complexes in the nuclear medicine and its use for treatment of heavy metal intoxication is briefly summarised. The aspects of its application in the field of nanoparticles preparation is behind the scope of this review, therefore it is only shortly described.  相似文献   

17.
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004  相似文献   

18.
Adsorption of fluoride ion was done from its aqueous solution by using maghemite (γ-Fe2O3) nanoparticles. Effects of the major independent variables (temperature, adsorbent dose and pH) and their interactions during fluoride ion adsorption were determined by response surface methodology (RSM) based on three-level three-factorial Box–Behnken design (BBD). Optimized values of temperature, maghemite nanoparticle dose and pH for fluoride sorption were found as 313 K, 0.5 g/L, and 4, respectively. In order to investigate the mechanism of fluoride removal, various adsorption isotherms such as Langmuir, Freundlich, Temkin and Florry–Huggins were fitted. The experimental data revealed that the Langmuir isotherm gave a more satisfactory fit for fluoride removal. The adsorption process was rapid and obeyed pseudo-second-order kinetics. The values of thermodynamic parameters ΔG°, ΔH° and ΔS° indicated that adsorption was spontaneous and endothermic in nature.  相似文献   

19.
20.
Arsenazo III modified maghemite nanoparticles (A-MMNPs) was used for removing and preconcentration of U(VI) from aqueous samples. The effects of contact time, amount of adsorbent, pH and competitive ions was investigated. The experimental results were fitted to the Langmuir adsorption model in the studied concentration range of uranium (1.0 × 10?4–1.0 × 10?2 mol L?1). According to the results obtained by Langmuir equation, the maximum adsorption capacity for the adsorption of U(VI) on A-MMNPs was 285 mg g?1 at pH 7. The adsorbed uranium on the A-MMNPs was then desorbed by 0.5 mol L?1 NaOH solution and determined spectrophotometrically. A preconcentration factor of 400 was achieved in this method. The calibration graph was linear in the range 0.04–2.4 ng mL?1 (1.0 × 10?10–1.0 × 10?8 mol L?1) of U(VI) with a correlation coefficient of 0.997. The detection limit of the method for determination of U(VI) was 0.01 ng mL?1 and the relative standard deviation (R.S.D.) for the determination of 1.43 and 2.38 ng mL?1 of U(VI) was 3.62% and 1.17% (n = 5), respectively. The method was applied to the determination of U(VI) in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号