首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the formation of intra-island grain boundaries during the early stages of pentacene film growth, we studied sub-monolayers of pentacene on pristine silicon oxide and silicon oxide with high pinning centre density (induced by UV/O(3) treatment). We investigated the influence of the kinetic energy of the impinging molecules on the sub-monolayer growth by comparing organic molecular beam deposition (OMBD) and supersonic molecular beam deposition (SuMBD). For pentacene films fabricated by OMBD, higher pentacene island-density and higher polycrystalline island density were observed on UV/O(3)-treated silicon oxide as compared to pristine silicon oxide. Pentacene films deposited by SuMBD exhibited about one order of magnitude lower island- and polycrystalline island densities compared to OMBD, on both types of substrates. Our results suggest that polycrystalline growth of single islands on amorphous silicon oxide is facilitated by structural/chemical surface pinning centres, which act as nucleation centres for multiple grain formation in a single island. Furthermore, the overall lower intra-island grain boundary density in pentacene films fabricated by SuMBD reduces the number of charge carrier trapping sites specific to grain boundaries and should thus help achieving higher charge carrier mobilities, which are advantageous for their use in organic thin-film transistors.  相似文献   

2.
Assemblies of magnetic nanoparticles (NPs) are intensively studied due to their high potential applications in spintronic, magnetic and magneto-electronic. The fine control over NP density, interdistance, and spatial arrangement onto substrates is of key importance to govern the magnetic properties through dipolar interactions. In this study, magnetic iron oxide NPs have been assembled on surfaces patterned with self-assembled monolayers (SAMs) of mixed organic molecules. The modification of the molar ratio between coadsorbed 11-mercaptoundecanoic acid (MUA) and mercaptododecane (MDD) on gold substrates is shown to control the size of NPs domains and thus to modulate the characteristic magnetic properties of the assemblies. Moreover, NPs can be used to indirectly probe the structure of SAMs in domains at the nanometer scale.  相似文献   

3.
Polymer/nanoparticle composite films are receiving growing attention thanks to their potential for application in ultra-thin electronic and optical devices. Polymer blend demixing has been shown to be a suitable technique for the structuring of polymer thin films and the patterning of nanoparticles (NP) within them. In this work we show that the morphology of thin polymer films made by spin-casting a polymer blend solution containing NP fillers on a surface depends strongly on the concentration of NP fillers. More specifically, polystyrene/polymethylmethacrylate (PS/PMMA) films formed from a toluene solution, and which demix following a nucleation and growth mechanism, were studied. It was found that both the height and the surface density of PMMA domains increased as the concentration of CoPt:Cu NPs in the film was increased. We find that similar effects are induced in a NP-free PS/PMMA demixed film upon increasing the molecular weight of the PS molecules. This suggests that under certain conditions the NPs and the polymer molecules in the blend do not behave as separate species but form aggregates.  相似文献   

4.
A scalable technique for making silica coatings with embedded two-dimensional arrays of iron oxide nanoparticles is presented. The iron oxide nanoparticle arrays were formed by depositing quasi-crystalline ferritin layers, an iron storage protein with an iron oxide mineral core, on solid substrates by a spread-coating technique based on evaporation-induced convective assembly. The layer of protein molecular arrays was then encapsulated in a silica matrix film deposited from a sol precursor. The organic protein shell of the ferritin molecules was then removed by controlled pyrolysis, leaving ordered iron oxide cores bound in the silica matrix. This article is the first report on combining convective self-assembly of proteins with sol-gel techniques of oxide film formation. The technique is technologically feasible and scalable to make coatings of encapsulated ordered magnetic clusters tens of cm(2) or larger in size.  相似文献   

5.
Electrokinetic properties of α-Fe(2)O(3) (hematite) nanoparticle monolayers on mica were thoroughly characterized using the streaming potential method. Hematite suspensions were obtained by acidic hydrolysis of ferric chloride. The average size of particles (hydrodynamic diameter), determined by dynamic light scattering (DLS) and AFM, was 22nm (pH=5.5, I=10(-2)M). The hematite monolayers on mica were produced under diffusion-controlled transport from the suspensions of various bulk concentration. The monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express zeta potential of hematite monolayers, determined by the streaming potential measurements, in terms of the particle coverage. Such dependencies, obtained for various pH, were successfully interpreted in terms of the three-dimensional electrokinetic model. A universal calibrating graph was produced enabling one to determine hematite monolayer coverage from the measured value of the streaming potential. The influence of the ionic strength, varied between 10(-4) and 10(-2)M, on the zeta potential of hematite monolayers was also studied. Additionally, the stability of monolayers (desorption kinetics) was determined under in situ conditions using the streaming potential method. Our experimental data prove that it is feasible to produce uniform and stable hematite particle monolayers of well-controlled coverage. Such monolayers may find practical applications as universal substrates for protein immobilization (biosensors) and in electrocatalytic applications.  相似文献   

6.
Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.  相似文献   

7.
The energetics of formation of thiyl-gold self-assembled monolayers is investigated using density-functional theory simulations. It is found that the chemisorption of dimethyl disulfide on the reconstructed Au(111) (22 x radical3) surface is most favored at the fcc reconstruction stripe, with initial physisorption leading to disulfide dissociation, adatom/vacancy-pair formation, and then, at a coverage of 7.8% sulfur atoms per gold atom, surface reconstruction lifting. At higher coverages, monolayer formation proceeds similarly on the unreconstructed surface, leading to surface pitting. Formation of the analogous adatom/vacancy-pair bound dissociated adsorbate complex on exposure of the clean unreconstructed surface to methanethiol is shown to be endothermic, however.  相似文献   

8.
Parallel striations made of silver nanowires were formed through the Marangoni instability induced during spin casting of poly(2-vinyl pyridine)/silver nanowire/chloroform solutions. The striation patterns of the silver nanowires resembled those obtained from spin casting of the corresponding neat polymer solutions, indicating essentially the same driving mechanism (i.e., the Marangoni instability). The silver nanowires were found to concentrate in the valleys of the striation pattern to balance the nonuniform surface tension distribution in the polymer thin film. The resulting nanowire striation patterns were found to depend on polymer concentration, rotational speed, and nanowire loading. Interestingly, this nanowire striation phenomenon was found to be independent of the substrate characteristics, hydrophobic or hydrophilic.  相似文献   

9.
In this article the adsorption of 3-methylthiophene on planar and nanoparticle Au surfaces is investigated. The resulting systems are compared with a benchmark system based on 1-decanethiol. The characterization data collected evidence the formation of a packed 3-methylthiophene SAM on the planar surface. In particular, spectroscopic investigations suggest that 3-methylthiophene aromatic system is not adsorbed on the surface through the pi-electron system but rather through the S atom alone. On the other hand, the behavior of 3-methylthiophene on nanoparticle surfaces is notably different from that of the alkanethiol. Only a limited fraction of the surface of Au nanoparticles results to be actually coated after purification; this notwithstanding, the nanoparticle growth seems to be strongly influenced by the presence of such a labile encapsulating agent.  相似文献   

10.
In this research, a simple, green and effective strategy was developed to produce long-term stable oil in water emulsion from soy protein and soy polysaccharide. Soy protein and soy polysaccharide formed dispersible complexes at pH around 3.25 aqueous solution through electrostatic and hydrophobic interactions. A high pressure homogenization produced the protein/polysaccharide complex emulsion having a droplet size about 250 nm. A heat treatment of the emulsion resulted in the protein denaturation, forming irreversible oil-water interfacial films composed of soy protein/soy polysaccharide complexes. The droplets of the emulsion were characterized by dynamic light scattering, ζ-potential, transmission electron microscopy, polysaccharide digestion via pectinase, and confocal laser scanning microscopy observation via dual fluorescence probes. As a result of the polysaccharide being fixed on the droplet surface, the emulsions exhibited long-term stability in the media containing pH values of 2-8 and 0.2 mol/L NaCl. The stable soy protein/soy polysaccharide complex emulsion is a suitable food-grade delivery system in which lipophilic bioactive compounds can be encapsulated.  相似文献   

11.
In this work, we analyse theoretically the hypothesis that zwitterionic lipids form dimers in adsorption monolayers on water/ hydrocarbon phase boundary. A dimer can be modelled as a couple of lipid molecules whose headgroup lateral dipole moments have antiparallel orientation. Properties including surface pressure, chemical potentials and activity coefficients are deduced from a general expression for the free energy of the monolayer. The theoretical model is in a good agreement with experimental data for surface pressure and surface potential of lipid monolayers. The results favour the hypothesis about formation of dimers in equilibrium with monomers, with the amount of the species depending on the area per molecule and temperature. The reaction of dimerisation turns out to be exothermic with a heat of about 2.5kT per dimer. The results may be applied to the molecular models of membrane structures and mechanisms.  相似文献   

12.
The formation of monolayers of alkylsilanes on a gold surface is characterized by X-ray photoelectron and reflection-absorption infrared spectroscopies. The reaction occurs through the activation of multiple Si-H bonds. Reactivity of the newly synthesized systems to oxygen and water is reported.  相似文献   

13.
We describe reproducible protocols for the chemisorption of self-assembled monolayers (SAMs), useful as imaging layers for nanolithography applications, from p-chloromethylphenyltrichlorosilane (CMPS) and 1-(dimethylchlorosilyl)-2-(p,m-chloromethylphenyl)ethane on native oxide Si wafers. Film chemisorption was monitored and characterized using water contact angle, X-ray photoelectron spectroscopy, and ellipsometry measurements. Atomic force microscopy was used to monitor the onset of multilayer deposition for CMPS films, ultimately allowing film macroscopic properties to be correlated with their surface coverage and nanoscale morphologies. Although our results indicate the deposition of moderate coverage, disordered SAMs under our conditions, their quality is sufficient for the fabrication of sub-100-nm-resolution metal features. The significance of our observations on the design of future imaging layers capable of molecular scale resolution in nanolithography applications is briefly discussed.  相似文献   

14.
Normal and lateral forces between two opposing monolayers of grafted polymer nanoparticles (NPs) were measured using the Surface Forces Apparatus in a humid atmosphere. The NPs made of N, N-diethylacrylamide and 2-hydroxyethyl methacrylate have a hydrodynamic diameter of ca. 660 nm at 25 degrees C. The effect of surface roughness was studied by creating surface asperities using different NP grafting densities ranging from 0.41 to 2.63 NPs/mum (2). An increase in the NPs grafting density gave rise to an increase in surface roughness and to a deformation of the nanoparticles caused by the lateral pressure between neighboring particles. An elastoplastic behavior of the nanoparticles was observed for large grafting densities, while a purely elastic behavior was observed for small grafting densities. The lateral forces measured between two opposing NP monolayers sliding past each other followed Amontons' law for all grafting densities. The friction coefficient between the surfaces appeared to increase significantly with an increase in surface roughness, which was inherent to an increase in the elastoplastic behavior of the NP monolayers.  相似文献   

15.
Optical properties of spin-cast chitosan films have been determined in the infrared, visible, and ultraviolet region of the spectrum using spectroscopic ellipsometry. Optical constants for the UV–vis–near IR spectra from 130 to 1700 nm were determined using Cauchy dispersion forms combined with Lorentzian oscillator models in the absorptive shorter wavelength regions. Infrared index of refraction and extinction coefficients from 750 to 4000 cm−1 were determined using ellipsometric data fits to dispersion models based on harmonic oscillators. This modeling determined that optical anisotropy was present and measurable over all wavelength regions of ellipsometric data.

To obtain information on the micro- and nano-scale surface structure, tapping mode atomic force microscopy (AFM) imaging was employed to determine morphology and roughness information of dry spin-cast chitosan films.  相似文献   


16.
This paper reports a methodology for preparing ordering hydrophilic metal nanoparticles into close-packed 2-dimensional arrays at a hexane-water interface with alkanethiol in the hexane layer. The destabilization of metal nanoparticles by the addition of alcohol caused the nanoparticles to adsorb to an interface where the surface of entrapped Au nanoparticle was in situ coated with the long-chain alkanethiols present in a hexane layer. The adsorption of alkanethiol to the nanoparticle surface caused the conversion of the electrostatic repulsive force to a van der Waals interaction, which is a key feature in forming highly ordered close-packed nanoparticle arrays.  相似文献   

17.
One-dimensional (1D) silver oxide nanoparticle arrays were synthesized by illuminating the composite Langmuir-Blodgett monolayers of porphyrin derivatives/Ag(+) and n-hexadecyl dihydrogen phosphate (n-HDP)/Ag(+) deposited on carbon-coated copper grids with daylight and then exposing them to air. Transmission electron microscopy (TEM) observation shows that the nanoparticle size is around 3 nm, with the separation of about 2-3 nm. High-resolution TEM (HRTEM) investigation indicates that the particles are made up of Ag(2)O. Ag nanorods with the width of 15-35 nm and the length of several hundreds of nanometers were synthesized by irradiating the composite Langmuir monolayers of porphyrin derivatives/Ag(+) and n-HDP/Ag(+) by UV-light directly at the air/water interface at room temperature. HRTEM image and selected-area electron diffraction (SAED) pattern indicate that the nanorods are single crystals with the (110) face of the face-centered cubic (fcc) silver parallel to the air/water interface. The formation of the 1D arrays and the nanorods should be attributed to the templating effect of the linear supramolecules formed by porphyrin derivative or n-HDP molecules in Langmuir monolayers through non-covalent interactions.  相似文献   

18.
The conjugation of 14 nm diameter CoFe2O4 nanoparticles to the surface of biotinylated microtubules enables their manipulation with externally applied magnetic fields of small, permanent NdFeB magnets. Microtubules are selectively patterned on kinesin motor-modified glass surfaces in coparallel arrays that mimic the orientation of the magnetic field lines over millimeter distances. The magnetic field is simultaneously used to increase surface loading of microtubules. We demonstrate that motility across the kinesin motor surface is retained following magnetic functionalization of the microtubules, while gliding speed is dependent on loading level of the neutravidin linker as well as magnetic nanoparticles.  相似文献   

19.
The formation of mixed monolayers of hydridospherosilsesquioxane clusters (H(8)Si(8)O(12)) and alkylsilanes (H(2n+1)C(n)SiH(3)) on Au has been investigated using X-ray photoelectron and reflection-absorption infrared spectroscopies and scanning tunneling microscopy. All of the techniques indicate the displacement of the majority of the siloxane clusters from the surface in favor of the alkylsilane.  相似文献   

20.
The adsorption of n-alkanethiols onto polycrystalline thin films of palladium containing a strong (111) texture produces well-organized, self-assembled monolayers. The organization of the alkane chains in the monolayer and the nature of the bonding between the palladium and the thiol were studied by contact angle measurements, optical ellipsometry, reflection absorption infrared spectroscopy (RAIRS), and X-ray photoelectron spectroscopy (XPS). The XPS data reveals that a compound palladium-sulfide interphase is present at the surface of the palladium film. The RAIR spectra, ellipsometry data, and wetting properties show that the palladium-sulfide phase is terminated with an organized, methyl-terminated monolayer of alkanethiolates. The local molecular environment of the alkane chains transitions from a conformationally disordered, liquidlike state to a mostly all-trans, crystalline-like structure with increasing chain length (n = 8-26). The intensities and dichroism of the methylene and methyl stretching modes support a model for the average orientation of an ensemble of all-trans-conformer chains with a tilt angle of approximately 14-18 degrees with respect to the surface normal and a twist angle of the CCC plane relative to the tilt plane of approximately 45 degrees. The SAMs are stable in air, although the sulfur present at the surface oxidizes in air over a period of 2-5 days at room temperature. The differences in chain organization between SAMs formed by microcontact printing and by solution deposition are also examined by RAIRS and XPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号