首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel versatile dicyanomethylene-4H-pyran (DCM) based derivative bearing ferrocenyl group (DCM-N-Fc) is designed as modulator to construct “off-on” logic operation. The optical properties of DCM-N-Fc are characterized by absorption and steady-state fluorescence technique, showing that the fluorescence from DCM chromophore via intramolecular charge transfer (ICT) is strongly quenched by photoinduced electron transfer (PET) process from ferrocene moiety. In contrast with the references (DCM-N and DCM-Fc), the fluorescence of DCM-N-Fc can be triggered by oxidizing ferrocenyl unit either chemically or electrochemically, exhibiting a characteristic emission modulation at around 610 nm with an electrofluorochromic behavior. Furthermore, the free energy and the fluorescence lifetime in the PET path verify the thermodynamic feasibility. Cyclic voltammetry, absorption spectroscopy, time-resolved fluorescence as well as DFT calculation have been used to elaborate the manipulation via both PET and ICT processes.  相似文献   

2.
Free energy of charge transfer presents a basic characteristic of reactions such as protonation, oxido-reduction and similar. Evaluation of this quantity requires calculation of charging energy. Proteins are structured dielectrics, and a consistent incorporation of their structure into calculation of intraprotein electric field results in expression for charging energy of an active group in protein, which is essentially different from that for a simple dielectric. An algorithm for semi-continuum calculation of relevant free energies is described. First of the two components of charging energy in protein, energy of the medium response to charge redistribution in reactants, should be always calculated as the charging energy by the charge redistribution using the static dielectric constant of protein. The second term is interaction energy of the charge redistribution with the 'frozen' electric field of the system before reaction. Charges of protein groups, at which the protein structure has been determined, are often different from those before reaction of charge transfer, so is the corresponding intraprotein field. The field is expressed through either both the optical and static dielectric constants of protein or only optical one depending on whether the charges of protein groups before reaction and upon structural analysis are the same or not. Proper allowance for difference in charges of reacting groups before reaction and upon structural analysis of protein is thermodynamically necessary and quantitatively important. The expression for activation free energy for charge transfer in proteins is derived in the form presenting explicitly an invariant contribution of protein structure.  相似文献   

3.
The recent literature on photoactive interlocked structures containing porphyrins is reviewed. Catenanes and rotaxanes studied both in the author's laboratory and by other groups, displaying either photoinduced energy or electron transfer processes are reported. In addition to porphyrins, the examined structures contain photo or electroactive components as C60, paraquat, ferrocene, aromatic amines. Both metal catenanes/rotaxanes and free catenanes/rotaxanes are discussed and the differences in their behavior is outlined with respect to structural rigidity and electronic coupling properties. The role of different conformations and their effect on photophysical properties is examined. In spite of their uncommon topology, these arrays behave similarly to covalently or self-assembled photoactive multi-component architectures and display fast energy/electron transfer rates and high charge separation efficiency. A rationale for this behavior is provided.  相似文献   

4.
The photophysical properties of two energy‐transfer dyads that are potential candidates for near‐infrared (NIR) imaging probes are investigated as a function of solvent polarity. The dyads ( FbC‐FbB and ZnC‐FbB ) contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. The dyads were studied in toluene, chlorobenzene, 1,2‐dichlorobenzene, acetone, acetonitrile and dimethylsulfoxide (DMSO). In both dyads, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of ~(5–10 ps)?1 and a yield of >99% in nonpolar and polar media. In toluene, the fluorescence yields (Φ f = 0.19) and singlet excited‐state lifetimes (τ~5.5 ns) are comparable to those of the benchmark bacteriochlorin. The fluorescence yield and excited‐state lifetime decrease as the solvent polarity increases, with quenching by intramolecular electron (or hole) transfer being greater for FbC‐FbB than for ZnC‐FbB in a given solvent. For example, the Φ f and τ values for FbC‐FbB in acetone are 0.055 and 1.5 ns and in DMSO are 0.019 and 0.28 ns, whereas those for ZnC‐FbB in acetone are 0.12 and 4.5 ns and in DMSO are 0.072 and 2.4 ns. The difference in fluorescence properties of the two dyads in a given polar solvent is due to the relative energies of the lowest energy charge‐transfer states, as assessed by ground‐state redox potentials and supported by molecular‐orbital energies derived from density functional theory calculations. Controlling the extent of excited‐state quenching in polar media will allow the favorable photophysical properties of the chlorin–bacteriochlorin dyads to be exploited in vivo. These properties include very large Stokes shifts (85 nm for FbC‐FbB , 110 nm for ZnC‐FbB ) between the red‐region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (λ f = 760 nm), long bacteriochlorin excited‐state lifetime (~5.5 ns), and narrow (≤20 nm) absorption and fluorescence bands. The latter will facilitate selective excitation/detection and multiprobe applications using both intensity‐ and lifetime‐imaging techniques.  相似文献   

5.
Three new D-π-A type compounds, each containing one benzothiazole ring as an electron acceptor and one N-ethylcarbazole group as electron donor, were synthesized and characterized by elemental analysis, NMR, MS and thermogravimetric analysis. The absorption and emission spectra of three compounds were experimentally determined in several solvents and were simultaneously computed using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The calculated reorganization energy for hole and electron indicates that three compounds are in favor of hole transport than electron transport. The calculated absorption and emission wavelengths are well coincident with the measured data. The calculated lowest-lying absorption spectra can be mainly attributed to intramolecular charge transfer (ICT). And the calculated fluorescence spectra can be mainly described as originating from an excited state with intramolecular charge transfer (ICT) character. The results show that three compounds exhibited excellent thermal stability and high fluorescence quantum yields, indicating their potential applications as excellent optoelectronic material in optical field.  相似文献   

6.
Chen P  Meyer TJ 《Inorganic chemistry》1996,35(19):5520-5524
Classical theories of electron transfer are modified to take into account the differences between electron transfer in a rigid medium and in a fluid. Intramolecular vibrations and part of the dielectric polarization are assumed to remain dynamic in rigid media while the remaining part of the polarization, arising from dipole reorientations, is frozen. In rigid media, electron transfer occurs with the solvent locked into the dipole orientations of the initial state. This causes an increase in the free energy change and a decrease in the solvent reorganizational energy. It also increases the activation free energy for electron transfer. For photoinduced electron transfer, the analysis is more complex because multiple states are involved. The activation free energy can either be greater or less than in a fluid depending on charge distributions before and after electron transfer. The same analysis can be applied to interconversion between excited states in rigid media.  相似文献   

7.
A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive an electron in a lower to a higher-energy state, thus providing a mechanism for the ejection of the electron to a nearby molecule (chlorophyll) or into the environment. The observed lifetimes of the electronically excited states are in accord/agreement with the investigations of Sundstr?m et al. and are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the carotenoid-chlorophylls chromophore to the reaction center by sending an electromagnetic wave (a photon) which provides a novel new mechanism for energy production. In the simplest version of the F?rster?CDexter theory, the excitation energy of a donor is transferred to an acceptor and then de-excited to the ground state by fluorescence with no electron being transferred. In the process proposed herein, charge and energy both are transferred from donor to acceptor which can further de-excite by fluorescence. The charge transfer time scale involving an actual transfer of electron is in the pico-second range.  相似文献   

8.
Electron transfer in porphyrin—quinone cyclophanes is investigated by fluorescence and absorption spectroscopy with pico- and femto-second pulses. In nonpolar solvents, the S1 state of the porphyrin shows a lifetime from 300 ps up to several nanoseconds, depending upon the number of quinones and upon their electron affinity. Comparative measurements in polar solvents demonstrate very fast electron transfer on a time scale between 1 and 10 ps. The results are analyzed with the aid of quantum-chemical calculations which give the energy of the charge transfer states and the relevant coupling strengths. For nonpolar solvents, theory suggests fluctuation-induced charge separation and/or direct radiationless internal conversion from the porphyrin S1 to the ground state. In polar solution, the molecules exist in a tilted configuration with strong electronic coupling and charge transfer states well below the S1 level, resulting in fast electron transfer and subsequent charge recombination within 10–40 ps.  相似文献   

9.
10.
On the basis of biphenyl (b) type molecules bpb-R substituted with a 2,2':6',2' '-terpyridine acceptor (bp) and either amino-type donor receptors (R = dimethylamino (DMA), A15C5 = monoaza-15-crown-5) or nonbinding substituents (R = CF(3), H, OMe) of various donor strengths, we developed a family of charge transfer (CT) operated monofunctional and bifunctional fluorescent sensors for protons and metal ions. These molecules are designed to communicate the interaction of an analyte with the acceptor and the donor receptor differing in basicity and cation selectivity by clearly distinguishable spectral shifts and intensity modulations in absorption and in emission as well as in fluorescence lifetime. From the dependence of the fluorescence spectra, fluorescence quantum yields, and fluorescence lifetimes of bpb-R on solvent polarity and proton concentration, the photophysics of bpb-R and their protonated analogues can be shown to be governed by the relaxation to a CT state of forbidden nature and by the switching between anti-energy and energy gap law type behaviors. This provides the basis for analytically favorable red shifted emission spectra in combination with comparatively high fluorescence quantum yields. Accordingly, bpb-H and bpb-OMe are capable of ratiometric emission signaling of protons. bpb-DMA reveals a protonation-induced ON-OFF-ON switching of its emission.  相似文献   

11.
Various possible pathways for photochemical conversion of light energy, including light-induced electron transfer and hydride transfer, are described. Several problems diminishing the photoconversion efficiency as well as side reactions affecting the stability of these systems are discussed. Oxidation of photosensitizers by singlet oxygen as well as attack by OH radicals is supposed to be the main degradation pathway for dyes and for the photoinduced reactions. The stability of viologens (acting as electron transfer agents) is mainly affected by hydrogenation, for which a reaction mechanism is presented. The dependence of rate constants on the free enthalpy of reaction is discussed with respect to quantum yields for light energy conversion. Following this, quantum yields of cyclic water splitting based on diffusion-controlled reactions are very low. Selective catalysis or vectorial processes (with a spatial charge separation) could enhance the quantum yields.  相似文献   

12.
Symmetric‐ and asymmetric hexaarylbenzenes (HABs), each substituted with three electron‐donor triarylamine redox centers and three electron‐acceptor triarylborane redox centers, were synthesized by cobalt‐catalyzed cyclotrimerization, thereby forming compounds with six‐ and four donor–acceptor interactions, respectively. The electrochemical‐ and photophysical properties of these systems were investigated by cyclovoltammetry (CV), as well as by absorption‐ and fluorescence spectroscopy, and compared to a HAB that only contained one neighboring donor–acceptor pair. CV measurements of the asymmetric HAB show three oxidation peaks and three reduction peaks, whose peak‐separation is greatly influenced by the conducting salt, owing to ion‐pairing and shielding effects. Consequently, the peak‐separations cannot be interpreted in terms of the electronic couplings in the generated mixed‐valence species. Transient‐absorption spectra, fluorescence‐solvatochromism, and absorption spectra show that charge‐transfer states from the amine‐ to the boron centers are generated after optical excitation. The electronic donor–acceptor interactions are weak because the charge transfer has to occur predominantly through space. Moreover, the excitation energy of the localized excited charge‐transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within the fluorescence lifetime (about 60 ns). This result was confirmed by steady‐state fluorescence‐anisotropy measurements, which further indicated symmetry‐breaking in the superficially symmetric HAB. Adding fluoride ions causes the boron centers to lose their accepting ability owing to complexation. Consequently, the charge‐transfer character in the donor–acceptor chromophores vanishes, as observed in both the absorption‐ and fluorescence spectra. However, the ability of the boron center as a fluoride sensor is strongly influenced by the moisture content of the solvent, possibly owing to the formation of hydrogen‐bonding interactions between water molecules and the fluoride anions.  相似文献   

13.
The photosystem I (PSI) pigment-protein complex of plants converts light energy into a transmembrane charge separation, which ultimately leads to the reduction of carbon dioxide. Recent studies on the dynamics of primary energy transfer, charge separation, and following electron transfer of the reaction center (RC) of the PSI prepared from spinach are reviewed. The main results of femtosecond transient absorption and fluorescence spectroscopies as applied to the P700-enchied PSI RC are summarized. This specially prepared material contains only 12–14 chlorophylls per P700, which is a special pair of chlorophyll a and has a significant role in primary charge separation. The P700-enriched particles are useful to study dynamics of cofactors, since about 100 light-harvesting chlorophylls are associated with wild PSI RC and prevent one from observing the elementary steps of the charge separation. In PSI RC energy and electron transfer were found to be strongly coupled and an ultrafast up-hill energy equilibration and charge separation were observed upon preferential excitation of P700. The secondary electron-transfer dynamics from the reduced primary electron acceptor chlorophyll a to quinone are described. With creating free energy differences (ΔG0) for the reaction by reconstituting various artificial quinones and quinoids, the rate of electron transfer was measured. Analysis of rates versus ΔG0 according to the quantum theory of electron transfer gave the reorganization energy, electronic coupling energy and other factors. It was shown that the natural quinones are optimized in the photosynthetic protein complexes. The above results were compared with those of photosynthetic purple bacteria, of which the structure and functions have been studied most.  相似文献   

14.
《Colloids and Surfaces》1988,29(3):293-304
Donor-acceptor interactions between a solid surface and an organic liquid lead to the creation of surface charge and counterions in the liquid. In simple systems, the energy levels of the solid and the liquid determine the direction of electron transfer and the sign of the surface charge. Our experimental results show that the surface charge and counterions can be formed either by a direct electron transfer as in the case of the metal-organic liquid or by an ion transfer due to the heterolysis of the donor-acceptor complex formed at the surface. The latter case includes many inorganic solid materials. Inorganic oxides bearing hydroxyl groups acquire their charge by a proton transfer mechanism. The proton affinity of the liquid was found to correlate with the sign of the surface charge on various inorganic solids. This result was consistent for both aprotic donor and amphoteric liquids. The various mechanisms leading to the formation of the surface charge in organic liquids are reviewed and a systematic approach to the phenomenon is provided.  相似文献   

15.
Wu J  Liu W  Ge J  Zhang H  Wang P 《Chemical Society reviews》2011,40(7):3483-3495
During the past decade, fluorescent chemosensors have become an important research field of supramolecular chemistry and have attracted great attention because of their simplicity, high selectivity and sensitivity in fluorescent assays. In the design of new fluorescent chemosensors, exploration of new sensing mechanisms between recognition and signal reporting units is of continuing interest. Based on different photophysical processes, conventional sensing mechanisms including photo-induced electron transfer (PET), intramolecular charge transfer (ICT), metal-ligand charge transfer (MLCT), twisted intramolecular charge transfer (TICT), electronic energy transfer (EET), fluorescence resonance energy transfer (FRET), and excimer/exciplex formation have been investigated and reviewed extensively in the literature. This tutorial review will mainly focus on new fluorescent sensing mechanisms that have emerged in the past five years, such as aggregation-induced emission (AIE) and C=N isomerization, which can be ascribed to fluorescence changes via conformational restriction. In addition, excited-state intramolecular proton transfer (ESIPT) has not been well reviewed yet, although a number of chemosensors based on the ESIPT mechanism have been reported. Thus, ESIPT-based chemosensors have been also summarized in this review.  相似文献   

16.
含荧光生色基团烯类单体及其聚合物的光化学行为   总被引:5,自引:0,他引:5  
近年来关于电荷转移现象的研究因理论及应用方面的重要性而备受瞩目。缺电子性丙烯酰类单体可以和给电子性化合物形成激态电葆转移复合物进而引发光聚合。我们合成了一系列同一分子中既含有给电子性荧光生色团又含缺电子性双键的烯类单体,发现这类单体在相同生色团浓度下的荧光强度均无穷氏人相应的聚合物的荧光强度。我们将这咎现象称为荧光结构自猝灭效应(SSQE),以区别于众所周知的浓度自猝灭现象。对于电子状态与之相反的  相似文献   

17.
Due to their tunable optical properties and their well-defined nanometric size, core/shell nanocrystals (quantum dots, QDs) are extensively used for the design of biomarkers as well as for the preparation of nanostructured hybrid materials. It is thus of great interest to understand their interaction with soft lipidic membranes. Here we present the synthesis of water-soluble peptide CdSe/ZnS QDs and their interaction with the fluid lipidic membrane of vesicles. The use of short peptides results in the formation of small QDs presenting both high fluorescence quantum yield and high colloidal stability as well as a mean hydrodynamical diameter of 10 nm. Their interaction with oppositely charged vesicles of various surface charge and size results in the formation of hybrid giant or large unilamellar vesicles covered with a densely packed layer of QDs without any vesicle rupture, as demonstrated by fluorescence resonance energy transfer experiments, zetametry, and optical microscopy. The adhesion of nanocrystals onto the vesicle membrane appears to be sterically limited and induces the reversion of the surface charge of the vesicles. Therefore, their interaction with small unilamellar vesicles induces the formation of a well-defined lamellar hybrid condensed phase in which the QDs are densely packed in the plane of the layers, as shown by freeze-fracture electron microscopy and small-angle X-ray scattering. In this structure, strong undulations of the bilayer maximize the electrostatic interaction between the QDs and the bilayers, as previously observed in the case of DNA polyelectrolytes interacting with small vesicles.  相似文献   

18.
The photophysical properties of 2‐phenyl‐naphtho[1,2‐d][1,3]oxazole, 2(4‐N,N‐dimethylaminophenyl)naphtho[1,2‐d][1,3]oxazole and 2(4‐N,N‐diphenylaminophenyl) naphtho[1,2‐d][1,3]oxazole were studied in a series of solvents. UV–Vis absorption spectra are insensitive to solvent polarity whereas the fluorescence spectra in the same solvent set show an important solvatochromic effect leading to large Stokes shifts. Linear solvation energy relationships were employed to correlate the position of fluorescence spectra maxima with microscopic empirical solvent parameters. This study indicates that important intramolecular charge transfer takes place during the excitation process. In addition, an analysis of the solvatochromic behavior of the UV–Vis absorption and fluorescence spectra in terms of the Lippert–Mataga equation shows a large increase in the excited‐state dipole moment, which is also compatible with the formation of an intramolecular charge‐transfer excited state. We propose both naphthoxazole derivatives as suitable fluorescent probes to determine physicochemical microproperties in several systems and as dyes in dye lasers; consequence of their high fluorescence quantum yields in most solvents, their large molar absorption coefficients, with fluorescence lifetimes in the range 1–3 ns as well as their high photostability.  相似文献   

19.
The architecture of windmill hexameric zinc(II) -porphyrin array 1 is attractive as a light-harvesting functional unit in view of its three-dimensionally extended geometry that is favorable for a large cross-section of incident light as well as for a suitable energy gradient from the peripheral porphyrins to the meso-meso-linked diporphyrin core. Three core-modified windmill porphyrin arrays 2-4 were prepared for the purpose of enhancing the intramolecular energy-transfer rate and coupling these arrays with a charge-separation functional unit. Bisphenylethynylation at the meso and meso' positions of the diporphyrin core indeed resulted in a remarkable enhancement in the intramolecular S1-S1 energy transfer in 2 with tau=2 approximately 3 ps, as revealed by femtosecond time-resolved transient absorption spectroscopy. The fluorescence lifetime of the S2 state of the peripheral porphyrin energy donor determined by the fluorescence up-conversion method was 68 fs, and thus considerably shorter than that of the reference monomer (150 fs), suggesting the presence of the intramolecular energy-transfer channel in the S2 state manifold. Such a rapid energy transfer can be understood in terms of large Coulombic interactions associated with the strong Soret transitions of the donor and acceptor. Picosecond time-resolved fluorescence spectra and transient absorption spectra revealed conformational relaxation of the S1 state of the diporphyrin core with tau = 25 ps. Upon photoexcitation of models 3 and 4, which bear a naphthalenetetracarboxylic diimide or a meso-nitrated free-base porphyrin attached to the modified diporphyrin core as an electron acceptor, a series of photochemical processes proceeded, such as the collection of the excitation energy at the diporphyrin core, the electron transfer from the S1 state of the diporphyrin to the electron acceptor, and the electron transfer from the peripheral porphyrins to the diporphyrin cation radical, which are coupled to provide a fully charge-separated state such as that in the natural photosynthetic reaction center. The overall quantum yield for the full charge separation is better in 4 than in 3 owing to the slower charge recombination associated with smaller reorganization energy of the porphyrin acceptor.  相似文献   

20.
In the present paper, photoinduced processes in the dyad molecules of pentathiophene (5T) and perylene-3,4:9,10-bis(dicarboximide) (PDI) with a flexible alkyl linker (propyl or hexyl) were investigated by using femtosecond laser flash spectroscopy in various solvents. Since absorption of 5T covers the wavelength region where absorption of PDI has minima and fluorescence of 5T overlaps with absorption of PDI, combination of 5T and PDI is favorable to achieve light energy harvesting as well as efficient electron transfer. When the sample was excited at the PDI moiety of the dyad, charge separation occurred almost quantitatively even in nonpolar solvent as well as in polar solvents. When the 5T moiety of the dyad was excited, efficient energy transfer to the PDI moiety from which charge separation occurred was confirmed, indicating that 5T acts as an antenna of the charge separation system, like a photosynthesis system of a plant. On the basis of Forster and Marcus theories and the estimated energy and electron-transfer rates, it was indicated that these dyads tend to take a folded structure in all solvents investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号