首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the classW r L p (1≦p≦∞;r=1, 2,…) of 1-periodic functions ?(x) having an absolutely continuous (r? l)st derivative such that $$\parallel f^{(r)} \parallel _{L_p } \leqq 1 (\parallel f^{(r)} \parallel _{L_\infty } = vrai \sup |f^{(r)} (x)|)$$ vrai sup ¦?(r)(x)¦) an optimal quadrature formula of the form (0 ≦? ≦r?1, 0 ≦x 0 < x1 <…< xm ≦ 1) is found in the cases ?=r?2 and ?=r? 3 (r=3, 5, …). An exact error bound is established for this formula. The statements proved forW r L p allowed us also to obtain, under certain restrictions posed on the coefficientsp kl, and the nodesx 0 andx m, optimal quadrature formulae for the classes $$W_0^r L_p = \{ f:f \in W^r L_p , f^{(i)} (0) = 0 (i = 0,1,...,r - 2)\} $$ and $$W_0^r L_p = \{ f:f \in \tilde W^r L_p , f^{(i)} (0) = f^{(i)} (1) = 0 (i = 0,1,...,r - 2)\} $$ for the same values ofp andr as above.  相似文献   

2.
Let Ω be an arbitrary open set in R n , and let σ(x) and g i (x), i = 1, 2, ..., n, be positive functions in Ω. We prove a embedding theorem of different metrics for the spaces W p r (Ω, σ, $ \vec g $ ), where rN, p ≥ 1, and $ \vec g $ (x) = (g 1(x), g 2(x), ..., g n (x)), with the norm $$ \left\| {u;W_p^r (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\left\| {u;L_{p,r}^r (\Omega ;\sigma ,\vec g)} \right\|^p + \left\| {u;L_{p,r}^0 (\Omega ;\sigma ,\vec g)} \right\|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where $$ \left\| {u;L_{p,r}^m (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\sum\limits_{\left| k \right| = m} {\int\limits_\Omega {(\sigma (x)g_1^{k_1 - r} (x)g_2^{k_2 - r} (x) \cdots g_n^{k_n - r} (x)\left| {u^{(k)} (x)} \right|)^p dx} } } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ We use this theorem to prove the existence and uniqueness of a minimizing element U(x) ∈ W p r (Ω, σ, $ \vec g $ ) for the functional $$ \Phi (u) = \sum\limits_{\left| k \right| \leqslant r} {\frac{1} {{p_k }}\int\limits_\Omega {a_k (x)} \left| {u^{(k)} (x)} \right|^{p_k } } dx - \left\langle {F,u} \right\rangle , $$ where F is a given functional. We show that the function U(x) is a generalized solution of the corresponding nonlinear differential equation. For the case in which Ω is bounded, we study the differential properties of the generalized solution depending on the smoothness of the coefficients and the right-hand side of the equation.  相似文献   

3.
Let σ n 2 (f, x) be the Cesàro means of second order of the Fourier expansion of the function f. Upper bounds of the deviationf(x)-σ n 2 (f, x) are studied in the metricC, while f runs over the class \(\bar W^1 C\) , i. e., of the deviation $$F_n^2 (\bar W^1 ,C) = \mathop {\sup }\limits_{f \in \bar W^1 C} \left\| {f(x) - \sigma _n^2 (f,x)} \right\|_c$$ . It is proved that the function $$g^* (x) = \frac{4}{\pi }\mathop \sum \limits_{v = 0}^\infty ( - 1)^v \frac{{\cos (2v + 1)x}}{{(2v + 1)^2 }}$$ , for whichg *′(x)=sign cosx, satisfies the following asymptotic relation: $$F_n^2 (\bar W^1 ,C) = g^* (0) - \sigma _n^2 (g^* ,0) + O\left( {\frac{1}{{n^4 }}} \right)$$ , i.e.g * is close to the extremal function. This makes it possible to find some of the first terms in the asymptotic formula for \(F_n^2 (\bar W^1 ,C)\) asn → ∞. The corresponding problem for approximation in the metricL is also considered.  相似文献   

4.
It is proved that iffL 1(?),f'L 1(?) and ∫∣x i f(x)∣dx<∞ fori=1, ...,k?1 and ifA=(a ij ) is a (k×k)-matrix with non-vanishing determinant, for $$\tilde f_A (\zeta ): = \smallint \exp (i\zeta _1 \sum\limits_{j = 1}^k {a_{1j} x^j } + ... + i\zeta _k \sum\limits_{j = 1}^k {a_{kj} x^j } )f(x)dx$$ the following relation holds: $$\tilde f_A (\zeta ) = O(\left\| \zeta \right\|)^{ - b_k } with b_k : = (\sum\limits_{j = 1}^k {j!)^{ - 1} } for k \in \mathbb{N}$$ .  相似文献   

5.
Let f(z) be a holomorphic Hecke eigencuspform of weight k for the full modular group. Let ?? f (n) be the nth normalized Fourier coefficient of f(z). Suppose that L(sym2 f, s) is the symmetric square L-function associated with f(z), and $ \lambda _{sym^2 f} (n) $ (n) denotes the nth coefficient L(sym2 f, s). In this paper, it is proved that $$ \sum\limits_{n \leqslant x} {\lambda _{sym^2 f}^4 (n)} = xP2(\log x) + O(x^{\frac{{79}} {{81}} + \varepsilon } ), $$ , where P 2(t) is a polynomial in t of degree 2. Similarly, it is obtained that $$ \sum\limits_{n \leqslant x} {\lambda _f^4 (n^2 )} = x\tilde P2(\log x) + O(x^{\frac{{79}} {{81}} + \varepsilon } ), $$ , where $ \tilde P_2 (t) $ is a polynomial in t of degree 2.  相似文献   

6.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

7.
We consider the weighted space W 1 (2) (?,q) of Sobolev type $$W_1^{(2)} (\mathbb{R},q) = \left\{ {y \in A_{loc}^{(1)} (\mathbb{R}):\left\| {y''} \right\|_{L_1 (\mathbb{R})} + \left\| {qy} \right\|_{L_1 (\mathbb{R})} < \infty } \right\} $$ and the equation $$ - y''(x) + q(x)y(x) = f(x),x \in \mathbb{R} $$ Here f ε L 1(?) and 0 ? qL 1 loc (?). We prove the following:
  1. The problems of embedding W 1 (2) (?q) ? L 1(?) and of correct solvability of (1) in L 1(?) are equivalent
  2. an embedding W 1 (2) (?,q) ? L 1(?) exists if and only if $$\exists a > 0:\mathop {\inf }\limits_{x \in R} \int_{x - a}^{x + a} {q(t)dt > 0} $$
  相似文献   

8.
We consider the spaces A p ( $\mathbb{T}^m $ ) of functions f on the m-dimensional torus $\mathbb{T}^m $ such that the sequence of Fourier coefficients $\hat f = \{ \hat f(k),k \in \mathbb{Z}^m \} $ belongs to l p (? m ), 1 ≤ p < 2. The norm on A p ( $\mathbb{T}^m $ ) is defined by $\left\| f \right\|_{A_p (\mathbb{T}^m )} = \left\| {\hat f} \right\|_{l^p (\mathbb{Z}^m )} $ . We study the rate of growth of the norms $\left\| {e^{i\lambda \phi } } \right\|_{A_p (\mathbb{T}^m )} $ as |λ| → ∞, λ ∈ ?, for C 1-smooth real functions φ on $\mathbb{T}^m $ (the one-dimensional case was investigated by the author earlier). The lower estimates that we obtain have direct analogs for the spaces A p (? m ).  相似文献   

9.
Let ${K=\mathbb{Q}(\theta)}$ be an algebraic number field with θ in the ring A K of algebraic integers of K and f(x) be the minimal polynomial of θ over the field ${\mathbb{Q}}$ of rational numbers. For a rational prime p, let ${\bar{f}(x)\,=\,\bar{g}_{1}(x)^{e_{1}}....\bar{g}_{r}(x)^{e_{r}}}$ be the factorization of the polynomial ${\bar{f}(x)}$ obtained by reducing coefficients of f(x) modulo p into a product of powers of distinct irreducible polynomials over ${\mathbb{Z}/p\mathbb{Z}}$ with g i (x) monic. Dedekind proved that if p does not divide [ ${A_{K}:\mathbb{Z}}$ [θ]], then ${pA_{K}=\wp_{1}^{e_{1}}\ldots\wp_{r}^{e_{r}}}$ , where ${\wp_{1},\ldots,\wp_{r}}$ are distinct prime ideals of A K , ${\wp_{i}=pA_{K}+g_{i}(\theta)A_{K}}$ having residual degree equal to the degree of ${\bar{g}_{i}(x)}$ . He also proved that p does not divide [ ${A_{K}:\mathbb{Z}}$ [θ]] if and only if for each i, either e i  = 1 or ${\bar{g}_{i}(x)}$ does not divide ${\bar{M}(x)}$ where ${M(x)=\frac{1}{p}(f(x)-g_{1}(x)^{e_{1}}....g_{r}(x)^{e_{r}})}$ . Our aim is to give a weaker condition than the one given by Dedekind which ensures that if the polynomial ${\bar{f}(x)}$ factors as above over ${\mathbb{Z}/p\mathbb{Z}}$ , then there are exactly r prime ideals of A K lying over p, with respective residual degrees ${\deg \bar {g}_{1}(x),...,\deg \bar {g}_{r}(x)}$ and ramification indices e 1, ..., e r . In this paper, the above problem has been dealt with in a more general situation when the base field is a valued field (K, v) of arbitrary rank and K(θ) is any finite extension of K.  相似文献   

10.
Let (X, m) and (X ,m ) be topologically isomorphic locally compact abelian groups. Let the isomorphism \(A:X^ \sim \xrightarrow{{onto}}X\) be such that (i) $$A:u - v \to A_{u - v} = A_u A_{ - v} = A_u A_v^{ - 1} = xy^{ - 1;} $$ (ii) $$m^ \sim (E) = m(AE)$$ for each Borel subsetE ofX. Define convolution, whenever it exists, onX andX by \((f \circ g)(x) = \int\limits_x {f(xy^{ - 1} )g(y)dm} (y)\) and \((f^ \sim *g^ \sim )(x) = \int\limits_{X^ \sim } {f^ \sim (x - y)g^ \sim (y)dm^ \sim } (y)\) , respectively. Let σ be a relatively invariant positive measure onX, i.e., for eachf K X, $$\int\limits_X {f(vy^{ - 1} )\sigma d(v) = \alpha (y)\int {f(v)d\sigma (v); \alpha (y)} > 0} $$ for ally∈X. Define a mappingR μ byR μ f(x)=α(x) f(x ?1 ), and setf(x ?1 )=f (x). LetB 1p denote the space of equivalence classes of functionsf for which \((\int\limits_X {|f} (y)|\alpha (y)^{1/P} d\sigma (y))< \) <∞. LetL p (m), L p (m ) andL p =L p (σ), 1≤p<∞, denote, respectively, the spaces of equivalence classes of functions for which \(\parallel f\parallel _{p(m)}^p = (\int\limits_X {|f|^p dm} )< \infty , \parallel f\parallel _{p(m - )}^p = \) \( = (\int\limits_X {|f|} ^p dm^ \sim )< \infty \) and \(\parallel f\parallel _p^p = (\int {|f|} ^p |d\sigma )< \infty \) . Let be the mappingSf=f , wheref (x)=α(A x ) 1/p f(A x );x∈X . Supposef, g∈L p . Set α(x)1/pf(x)=F(x), α(x)1/pg(x)=H(x). A linear bounded mappingT: L p →L p , 1≤p<∞, is said to belong to classI (i.e.,T∈I∩C(L p ,L p )) if there exist functionsV andK such thatg=Tf means(V?H)=(K?F ); similarly, the bounded linear mappingT: L p →L p ,1≤ p<∞, is said to belong to classG (i.e.,T∈G∩C(L p ,L p )) if there exist functionsV andK such thatg=Tf means(V?H)=(K?F). The following theorem is proved, and its applications to Watson transforms are considered.  相似文献   

11.
Suppose that H p (E 2n + ) is the Hardy space for the first octant $$E_{2n}^ + = \{ z \in \mathbb{C}^n :\operatorname{Im} z_j > 0, j = 1, \ldots ,n\} $$ and P ? l (f, x), l > 0, is the generalized Abel-Poisson means of a function f ? H p (E 2n + ). In this paper, we prove the inequalities $$C_1 (l,p)\widetilde\omega _l (\varepsilon ,f)_p \leqslant \left\| {f(x) - P_\varepsilon ^l (f,x)} \right\|_p \leqslant C_2 (l,p)\omega _l (\varepsilon ,f)_p ,$$ where $\widetilde\omega _l (\varepsilon ,f)_p $ and ω l (?, f) p are the integral moduli of continuity of lth order. For n = 1 and an integer l, this result was obtained by Soljanik.  相似文献   

12.
Let \(\tilde W_p^r : = \left\{ {f\left| {f \in C^{r - 1} } \right.} \right.\left[ {0,2\pi } \right],f^{(i)} (0) = f^{(i)} (2\pi ),i = 0, \ldots ,r - 1,f^{(r - 1)}\) , abs. cont. on [0, 2π] andf (r)L p[0, 2π]}, and set \(\tilde B_p^r : = \left\{ {f\left| {f \in \tilde W_p^r ,} \right.\left\| {f^{(r)} } \right\|_p \leqslant 1} \right\}\) . We find the exact Kolmogrov, Gel'fand, and linearn-widths of \(\tilde B_p^r\) inL p forn even and allp∈(1, ∞). The strong asymptotic estimates forn-widths of \(\tilde B_p^r\) inL p are also obtained.  相似文献   

13.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

14.
Let ${\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)}$ with the non-negative potential V belonging to reverse H?lder class with respect to the measure ??(x)dx, where ??(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying ${\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. }$ We obtain some estimates for ${V^{\alpha}\mathcal{L}^{-\alpha}}$ on the weighted L p spaces and we study the weighted L p boundedness of the commutator ${[b, V^{\alpha} \mathcal{L}^{-\alpha}]}$ when ${b\in BMO_\omega}$ and 0?<??? ?? 1.  相似文献   

15.
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(р n (х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I. Для каждого δ, 0<δ<1, суще ствует числоB=B(δ, w) тако е, что если $$f_N (x) = \sum\limits_{j = 1}^N {a_j p_{v_j } (x)} $$ причем выполнено сле дующее условие лакун арности $$\begin{gathered} v_{j + 1} - v_j \geqq B(\delta ,w) (j = 1,2,...,N - 1), \hfill \\ v_1 \geqq B(\delta ,w) \hfill \\ \end{gathered} $$ , то для некоторого С(δ, w) и всехh и δ, для которых $$ - 1 \leqq h - \delta< h + \delta \leqq + 1$$ , имеет место неравенс тво $$\int\limits_{ - 1}^1 {|f_N (x)|^2 w(x)dx \leqq C(\delta ,w)} \int\limits_{h - \delta }^{h + \delta } {|f_N (x)|^2 w(x)dx} $$ каковы бы ни былиa j ,N и h. II. Если формальный ряд $$\sum\limits_{j = 1}^\infty {b_j p_{\mu _j } (x)} $$ удовлетворяет услов ию лакунарности μj+1j→∞ и суммируем, например, м етодом Абеля на произвольно малом отрезке [а, Ь] ?[0,1] к ф ункцииf(x) такой, что \(f(x)\sqrt {w(x)} \in L_2 [a,b]\) , то $$\sum\limits_j {|b_j |^2< \infty } $$ Теорема I — это первый ш аг в направлении проб лемы типа Мюнтца-Саса о замкнут ости подпоследовательно сти pvj(x)} последовател ьности {рn(х)} на отрезке [а, Ь] в метрике С[а, Ь] (см. теорему II стать и).  相似文献   

16.
17.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

18.
19.
В РАБОтЕ РАссМАтРИВА УтсьS Р-пОДсИстЕМы О. Н.с. В ЧАстНОстИ, ДОкАжыВА Етсь слЕДУУЩАь тЕОРЕ МА, кОтОРАь НЕУсИльЕМА. тЕОРЕМА.пУсть Р>2 —ЧЕ тНОЕ ЧИслО, δ — пРОИжВО льНОЕ ЧИслО, 0<δp?2,Φ= {Φ n(x)} n=1 N O.H.C.,x?[0,1],пРИЧЕМ ∥ Φ np≦M, n=1,2,...,N, гДЕР=Р+δ, 0М<∞. тОгДА Иж сИстЕМы Ф МОж НО ВыБРАть пОДсИстЕМ У \(\Phi ' = \left\{ {\varphi _{n_k } } \right\}_{k = 1}^{N'} ,N' \geqq N^{\alpha (\delta )} ,\alpha (\delta ) = \frac{{2\delta }}{{p(p - 2 + \delta )}}\) , тАкУУ, ЧтО Дль лУБОгО п ОлИНОМА \(P(x) = \sum\limits_{k = 1}^{N'} {a_k \varphi _{n_k } (x)} \) ИМЕЕ т МЕстО ОцЕНкА $$(\mathop \sum \limits_{k = 1}^{{\rm N}'} a_k^2 )^{1/2} \leqq \left\| P \right\|_p \leqq c_{p,M,\delta } (\mathop \sum \limits_{k = 1}^{{\rm N}'} a_k^2 )^{1/2} $$ (c p, m, δ — пОстОьННАь, жАВИ сьЩАь тОлькО Отp, M, δ, НО НЕ От N ИлИ кОЁФФИцИЕНтОВ пО лИ-НОМА). пРИВОДьтсь И ДРУгИЕ РЕжУльтАты А НАлОгИЧНОгО хАРАктЕ РА.  相似文献   

20.
В статье рассматрива ются одномерные и дву мерные тригонометрические ряды с моно-тонными коэффициентами. Дает ся пример двойного тригонометрическог о ряда (1) $$\mathop \sum \limits_{n,k = 1}^\infty a_{nk} \sin nx\sin ky,$$ , коэффициенты которо го монотонны поk и поп, любая последовательность \(\{ S_{n_k m_k } (x,y)\} _{k = 1}^\infty\) прямоугольных части чных сумм ряда (1), где min(n k ,m k )→∞ приk→∞, расходится по чти всюду на (0,n)2. Кроме того, изучается мера множеств нулей ф ункций (2) $$f(x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{n = 1}^{a_0 } a_n \cos nx\tilde f(x) = \mathop \sum \limits_{n = 1}^\infty a_n \sin nx,$$ , гдеа n ↓ приn→ ∞, и доказ ьшается несколько те орем о скорости убывания ко эффициентовa n рядов (2), если все част ичные суммыS n (f,x) или \(S_n (\tilde f,x)\) дляn=1,2,... неотрицате ль-ны на (0,n).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号