首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang C  Chai Y  Yuan R  Guo J  Jia F 《Analytical sciences》2012,28(3):275-282
Three novel hybrid materials have been synthesized by ligands: N-(2-vinylsulfanyl-ethylidene)-benzene-1,2-dimine (SBD), N-pyridin-2-ylmethylene-benzene-1,2-dimine (NBD) and N-furan-2-ylmethylene-benzene-1,2-dimine (OBD), covalently linking to multi-walled carbon nanotubes (MWCNTs). These MWCNT hybrid materials were used both as ionophores and as ion-to-electron transducers to construct Ag(+) carbon paste electrodes. The resulting electrodes show higher selectivity to Ag(+) than other cations tested. Among the three electrodes, the electrode based on SBD-g-MWCNTs with optimum composition shows the best performance to Ag(+). It exhibits an excellent Nernstian response to Ag(+) in the concentration range from 8.8 × 10(-8) to 1.0 × 10(-1) M with a detection limit of 6.3 × 10(-8) M, and it can also be used over a wide pH range of 3.0-8.0 with a quick response time of 5 s. The response mechanism of the proposed electrode was also investigated by using AC impedance and UV-vis spectroscopy techniques.  相似文献   

2.
Gong H  Li X 《The Analyst》2011,136(11):2242-2246
An electrochemical assay for the detection of silver ion was reported, which was based on the interaction of the Y-type, C-rich ds-DNA with Ag(+). Upon addition of Ag(+), Y-type, C-rich ds-DNA could form an intramolecular duplex, in which Ag(+) can selectively bind to cytosine-cytosine (C-C) mismatches forming C-Ag(+)-C complex. The binding result was evaluated by electrochemical impedance spectroscopy (EIS) and analyzed with the help of Randles' equivalent circuits. The differences of charge transfer resistance, ΔR(CT), after and before the addition of Ag(+), allows the detection and quantitative analysis of Ag(+) with a detection limit of 10 fM. Moreover, cysteine (Cys) was applied to remove Ag(+) from the C-Ag(+)-C complex, which allowed the Ag(+) sensor to be reproduced. In the same way, ΔR(CT) for the C-Ag(+)-C system in the absence and presence of Cys allows the detection of Cys at a concentration as low as 100 fM. Finally, the potential application of the Ag(+) sensor was also explored, such as in lake and drinking water.  相似文献   

3.
Tan E  Yin P  Lang X  Wang X  You T  Guo L 《The Analyst》2012,137(17):3925-3928
We have developed a surface-enhanced Raman scattering (SERS) nanosensor firstly for Ag ions and Ag nanoparticles detection based on 2-mercaptoisonicotinic acid (2MNA)-functionalized Au nanoparticles. Ag(+) can coordinate with 2MNA resutling in a variation of its SERS spectrum, which is used as a criterion to determine Ag(+) in a solution. This sensor exhibits a detection limit no more than 25 nM and has a high selectivity against other metal ions. More importantly, it can be directly applied in real sample detection.  相似文献   

4.
Potentiometric sensors based on glassy carbon electrode covered with polyaniline and thiacalix[4]arenes containing amidopyridine, morpholide, pyrrolidide and hydrazide functional groups in cone, partial cone and 1,3-alternate conformations have been developed and applied for determination of Ag(+) ions in the range from 1.0 x 10(-2) to 4.0 x 10(-7)M and limits of detection from 1 x 10(-7) to 3.5 x 10(-8)M. The sensitivity of Ag(+) detection decreases in the following range of thiacalix[4]arene substituents: morpholide>pyrrolidide>amidopyridine>hydrazide. Potentiometric selectivity coefficients predominantly showed binding of Ag(+), Hg(II) and Fe(III) ions over other transient and alkali metals. The influence of functional groups and conformation of receptor on the selectivity of the sensor response was investigated. As shown, selectivity and sensitivity of Ag(+) determination depends on the steric accessibility of the binding site and flexibility of the receptor structure. For Fe(III) ions, changes of the sensor potential are also determined by their implementation in redox reactions of polyaniline.  相似文献   

5.
Zhang G  Lin W  Yang W  Lin Z  Guo L  Qiu B  Chen G 《The Analyst》2012,137(11):2687-2691
The design of devices with multiple functions, simple handling procedures and sufficient sensitivity has drawn great interests in the field of analysis. Metal-nucleotide based pairs, such as T-Hg(2+)-T and C-Ag(+)-C complexes accompanied by SYBR Green I (SG), are used to selectively bind duplex-strand DNA by observing a bright fluorescence signal in this work, thus yielding a simple method for the rapid detection of Hg(2+) and Ag(+) without a complex labeling process. Based on this principle, 'OR' and 'AND' logic gates for the multiplexed analysis of Hg(2+) and Ag(+) were developed, and their practical application for the detection of Hg(2+) and Ag(+) in drinking water was reported.  相似文献   

6.
Li H  Zhai J  Sun X 《The Analyst》2011,136(10):2040-2043
In this Communication, we report water-soluble nano-C(60) in the first use as an effective fluorescent sensing platform for the highly sensitive and selective detection of Ag(+). The general concept used in this approach is based on a fluorescently labeled single-stranded DNA (ssDNA) probe that adsorbs on nano-C(60), leading to substantial dye fluorescence quenching; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on nano-C(60) and thus retains the dye fluorescence. This sensing system exhibits a detection limit as low as 1 nM and has a high selectivity against other metal ions. Finally and most importantly, we demonstrate its performance in real sample analysis.  相似文献   

7.
We report a gelator that is responsive to Ag(+) and Li(+) cations but unresponsive to Na(+) and K(+), and demonstrate that silver-alkene interactions play a vital role in mediating the selective gel-sol response to Ag(+).  相似文献   

8.
A naphthalimide-based fluorescent probe, NPQ, that contains a novel receptor was successfully developed. NPQ exhibited "turn-on" fluorescence and excellent selectivity toward Ag(+) in the presence of various other metal ions in aqueous solution. A series of control compounds were designed and synthesized in order to explore the photoinduced electron transfer (PET) quenching mechanism of NPQ and binding mode of NPQ with Ag(+). Moreover, with the NPQ-Ag(+) complex, I(-) was easily selectively recognized by a marked fluorescence quenching. The live cell imaging experiments demonstrate that NPQ can be used as a fluorescent probe for monitoring Ag(+) in living cells.  相似文献   

9.
Two novel conjugated polymers containing a 2,2'-biimidazole moiety have been designed, synthesized, and demonstrated to be used as an effective fluorescent sensing platform for detection of Ag(+) and cysteine. This is the first example utilizing a fluorescent conjugated polymer-Ag(+) complex to selectively detect Cys with a nanomolar range detection limit.  相似文献   

10.
This communication describes a simple, general route for preparing bifunctional hybrid nanoparticles based on direct adsorption and spontaneous reduction of Ag(+) and Pd(2+) onto the surface of carbon-encapsulated superparamagnetic colloidal nanoclusters. Because of the existence of carbon coating and surface hydrophilic carboxyl, the bifunctional hybrid nanoparticles show excellent water-dispersity. In addition, the size (35 nm-86 nm) and number of Ag nanocrystals can be tuned by changing the molar ratios and reaction concentration between Ag(+) and nanoclusters.  相似文献   

11.
A new thiacalix[4]arene-cinnamaldehyde derivative 3, which undergoes red shift in the fluorescence spectrum in the presence of Ag(+) ions, has been synthesized. This emission shift is attributed to the intramolecular charge transfer process in the presence of Ag(+) ions with a detection limit in the nanomolar range.  相似文献   

12.
Xie WY  Huang WT  Li NB  Luo HQ 《The Analyst》2011,136(20):4130-4133
Upon formation of cytosine-Ag(+)-cytosine base pairs as a mediator for the photoinduced electron transfer, the fluorescence of FAM-labeled DNA was quenched and the fluorescence emission wavelength exhibited a red shift. Based on these phenomena a novel dual-output fluorescent DNA sensor for Ag(+) ions and cysteine detection was developed.  相似文献   

13.
Mao L  Yuan R  Chai Y  Zhuo Y  Jiang W 《The Analyst》2011,136(7):1450-1455
The potential controlling silver catalysis for Ru(bpy)(3)(2+) electrochemiluminescence (ECL) signal at a special potential -0.4~1.25 V was newly developed as the new ECL signal amplification strategy for ultrasensitive protein detection. Firstly, the wheat-like deposited silver (DpAg) particles were modified on the bare glass carbon electrode (GCE) surface by cyclic voltammetry deposition to capture the primary antibodies and then bind the antigen analytes. Secondly, as a sandwich immunoreaction format, the secondary antibodies conjugated with the Ru(bpy)(3)(2+)-doped Pt (Pt@Ru) nanoparticles by the multi-sites biotin/streptavidin (SA) affinity can be captured onto the electrode surface to generate ECL signal. In the proposed Ru(bpy)(3)(2+) ECL system without any co-reactant, the detected ECL signal was amplified due to following multiple amplification strategies: (1) the ECL catalysis for Ru(bpy)(3)(2+) was performed by electro-inducing the DpAg particles to generate Ag(+) ion and controlled by the special potential. The catalyzer Ag(+) was produced near the electrode surface and reproduced by cyclic potential scan, which improved the catalytic efficiency. (2) The amount of the ECL signal probes linked to secondary antibodies were amplified by the adsorption of Pt nanoparticles and the multiple sites bridge linkage of biotin/SA. These new multiple signal amplification strategies made the proposed ECL immunosensor achieve ultrasensitive detection for model protein human IgG with a detection limit down to 3 pg mL(-1), which can be further extended to the detection of disease biomarkers.  相似文献   

14.
An electrochemiluminescent biosensor was designed for the detection of Ag(+) ions and cysteine as well as their interaction study. To this end, a functional nucleic acid was designed for target recognition and probe intercalation.  相似文献   

15.
A highly sensitive and selective fluorescent chemosensor SC1 for Ag(+) based on a coumarin-Se(2)N chelating conjugate has been synthesized and characterized. Due to inhibiting a photoinduced electron transfer (PET) quenching pathway, a fluorescent enhancement factor of 4-fold is observed under the binding of the Ag(+) cation to the chemosensor SC1 with a detection limit down to the 10(-8) M range.  相似文献   

16.
The capabilities of laser ablation-inductively coupled plasma-mass spectrometry for the detection of trace elements in a gel after gel electrophoresis were systematically studied. Figures of merit, such as limit of detection, linearity, and repeatability, were evaluated for various elements (Li, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Pd, Ag, Cd, Pt, Tl, Pb). Two ablation strategies were followed: single hole drilling, relevant for ablation of spots after two-dimensional (2-D) separations, and ablation with translation, i.e., on a line, relevant for one-dimensional (1-D) separations. This technique was applied to the detection of selenoproteins in red blood cells extracts after a 1-D separation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and the detection of selenium-containing proteins in yeast after 2-D electrophoresis (2-DE). The detection procedure was further improved by using the dynamic reaction cell technology, which allowed the removal of the Ar_2(+) interference and hence the use of the most abundant Se isotope, (80)Se. Reaction gases were compared (methane, carbon monoxide, ammonia, oxygen and the combination of argon (collision gas) and hydrogen (reaction gas)). In each instance, the reaction cell parameters were optimized in order to obtain the lowest detection limit for Se (as (80)Se(+), (82)Se(+) or (77)Se(+); and as (80)Se(16)O(+), (82)Se(16)O(+) or (77)Se(16)O(+) with O(2) as the reaction gas). Carbon monoxide was found to offer the best performance. The detection limit with the use of DRC and He as transport gas was 0.07 microg Se g(-1) gel with single hole drilling and 0.15 microg Se g(-1) gel for ablation with translation.  相似文献   

17.
Near thermal energy reactive collisions of small mixed metal cluster cations Ag(m)Au(n) (+) (m+n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu(3) (+) and Ag(2)Au(2) (+) are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu(2)CO(+). In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77 to 1.09 eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag(2)Au(2) (+) suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.  相似文献   

18.
Johnson DC  Allen RE 《Talanta》1973,20(3):305-313
A new electroanalytical technique is described, called "stripping voltammetry with collection." The technique involves the use of a rotating ring-disk electrode and is an improvement over traditional voltammetric stripping at a single electrode in that it is characterized by a lower limit of detection and that the period of deposition before stripping can be shorter. The use of the technique is illustrated by the determination of 10(-10)M Ag(+) in 0.1 M H(2)SO(4) by use of a ring-disk electrode having a disk electrode constructed of glassy carbon and a ring electrode constructed of platinum.  相似文献   

19.
Reactions of Ag(I) and a series of beta-diketiminate ligands have been investigated to demonstrate that unique macrocyclic dinuclear and tetranuclear Ag(I)-complexes and a linear coordination polymer Ag(I)-complex as well as oxidative C-C coupling dimer products of the ligands were obtained depending on the substituents on the carbon framework of beta-diketiminate ligands.  相似文献   

20.
To construct the self-assembly of metal-ion-induced well-ordered architectures based on calixcrowns, isomeric thiacalix[4]benzocrowns-4 1 and 2 with rigid and small crown units were employed as the new scaffolds. They all show remarkable selectivity for Ag(+) and their complexation ability towards Ag(+) results in two novel dimeric aggregates of calixcrowns, which were first evidenced by ESI-MS, (1)H and DOSY-NMR spectra. Ultimately, X-ray diffraction experiments confirmed unambiguously the existence of the two metal-ion-induced dimers in lower rim/lower rim mode, and showed that dimerization of calixcrown 1 or 2 in the presence of Ag(+) could form dimeric supramolecular cavity with a small inner room. Moreover, the positional isomerism of their crown units (o-benzocrown unit for ligand 1 and m-benzocrown unit for 2) led to a dramatic change in the configuration of the two dimeric cavities 1·Ag(+) and 2·Ag(+). For dimeric cavity 1·Ag(+), two silver centers seamed two thiacalix[4]crown molecules together and resided at the edge of the dimeric self-assembling cavity; for dimeric cavity 2·Ag(+), one Ag(+) stitched two thiacalixcrowns together and was encapsulated in the center of the self-assembling cavity, while the other Ag(+) is tied down to one end of the dimer. Consequently, as a result of the different construction of dimeric cavities 1·Ag(+) and 2·Ag(+) the extended structures of the complexes are also different. The neighbour self-assembling cavities 1·Ag(+) are mutually oriented side-by-side and form a 1-D rectilineal polymeric chain. While, the neighbour self-assembling cavities 2·Ag(+) arrange themselves in a typical head-to-tail fashion to form a zig-zag polymeric chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号