首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report how closely the Kohn-Sham highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) eigenvalues of 11 density functional theory (DFT) functionals, respectively, correspond to the negative ionization potentials (-IPs) and electron affinities (EAs) of a test set of molecules. We also report how accurately the HOMO-LUMO gaps of these methods predict the lowest excitation energies using both time-independent and time-dependent DFT (TD-DFT). The 11 DFT functionals include the local spin density approximation (LSDA), five generalized gradient approximation (GGA) functionals, three hybrid GGA functionals, one hybrid functional, and one hybrid meta GGA functional. We find that the HOMO eigenvalues predicted by KMLYP, BH&HLYP, B3LYP, PW91, PBE, and BLYP predict the -IPs with average absolute errors of 0.73, 1.48, 3.10, 4.27, 4.33, and 4.41 eV, respectively. The LUMOs of all functionals fail to accurately predict the EAs. Although the GGA functionals inaccurately predict both the HOMO and LUMO eigenvalues, they predict the HOMO-LUMO gap relatively accurately (approximately 0.73 eV). On the other hand, the LUMO eigenvalues of the hybrid functionals fail to predict the EA to the extent that they include HF exchange, although increasing HF exchange improves the correspondence between the HOMO eigenvalue and -IP so that the HOMO-LUMO gaps are inaccurately predicted by hybrid DFT functionals. We find that TD-DFT with all functionals accurately predicts the HOMO-LUMO gaps. A linear correlation between the calculated HOMO eigenvalue and the experimental -IP and calculated HOMO-LUMO gap and experimental lowest excitation energy enables us to derive a simple correction formula.  相似文献   

2.
The lowest few electronic excitations of a pi-stacked adenine dimer in its B-DNA geometry are investigated, in the gas phase and in a water cluster, using a long-range-corrected version of time-dependent density functional theory (TD-DFT) that asymptotically incorporates Hartree-Fock exchange. Long-range correction is shown to eliminate the catastrophic underestimation of charge-transfer (CT) excitation energies that plagues conventional TD-DFT, at the expense of introducing one adjustable parameter, mu, that determines the length scale on which Hartree-Fock exchange is turned on. This parameter allows us to interpolate smoothly between hybrid density functionals and time-dependent Hartree-Fock theory. Excitation energies for CT states (in which an electron is transferred from one adenine molecule to the other) are found to increase dramatically as a function of mu. Uncorrected hybrid functionals underestimate the CT excitation energies, placing them well below the valence excitations, while time-dependent Hartree-Fock calculations place these states well above the valence states. Values for mu determined from certain benchmark calculations place the CT states well above the valence pipi* and npi* states at the Franck-Condon point.  相似文献   

3.
We apply the long-range correction (LC) scheme for exchange functionals of density functional theory to time-dependent density functional theory (TDDFT) and examine its efficiency in dealing with the serious problems of TDDFT, i.e., the underestimations of Rydberg excitation energies, oscillator strengths, and charge-transfer excitation energies. By calculating vertical excitation energies of typical molecules, it was found that LC-TDDFT gives accurate excitation energies, within an error of 0.5 eV, and reasonable oscillator strengths, while TDDFT employing a pure functional provides 1.5 eV lower excitation energies and two orders of magnitude lower oscillator strengths for the Rydberg excitations. It was also found that LC-TDDFT clearly reproduces the correct asymptotic behavior of the charge-transfer excitation energy of ethylene-tetrafluoroethylene dimer for the long intramolecular distance, unlike a conventional far-nucleus asymptotic correction scheme. It is, therefore, presumed that poor TDDFT results for pure functionals may be due to their lack of a long-range orbital-orbital interaction.  相似文献   

4.
Following the suggestion of local hybrid functionals with position-dependent exact-exchange admixture [J. Jaramillo, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 1068 (2003)], a functional that mixes only local and exact exchange plus local correlation has been constructed. With a simple local mixing function for the position dependence, this Lh-SVWN functional provides atomization energies for the G2-1 set that are competitive with currently available state-of-the-art functionals like, e.g., B3LYP. This is achieved without generalized gradient approximations for exchange or correlation.  相似文献   

5.
《Chemical physics》1986,104(2):229-250
A general purpose MC SCF program with a direct, fully second-order and step-restricted algorithm is presented. The direct character refers to the solution of an MC SCF eigenvalue equation by means of successive linear transformations where the norm-extended hessian matrix is multiplied onto a trial vector without explicitly constructing the hessian. This allows for applications to large wavefunctions. In the iterative solution of the eigenvalue equation a norm-extended optimization algorithm is utilized in which the number of negative eigenvalues of the hessian is monitored. The step control is based on the trust region concept and is accomplished by means of a simple modification of the Davidson—Liu simultaneous expansion method for iterative calculation of an eigenvector. Convergence to the lowest state of a symmetry is thereby guaranteed, and test calculations also show reliable convergence for excited states. We outline the theory and describe in detail an efficient implementation, illustrated with sample calculations.  相似文献   

6.
An effective exact-exchange Kohn-Sham approach for the treatment of excited electronic states, the generalized adiabatic connection open-shell localized Hartree-Fock (GAC-OSLHF) method is presented. The GAC-OSLHF method is based on the generalized adiabatic connection Kohn-Sham formalism and therefore capable of treating excited electronic states, which are not the energetically lowest of their symmetry. The method is self-interaction free and allows for a fully self-consistent computation of excited valence as well as Rydberg states. Results for atoms and small- and medium-size molecules are presented and compared to restricted open-shell Hartree-Fock (ROHF) and time-dependent density-functional results as well as to experimental data. While GAC-OSLHF and ROHF results are quite close to each other, the GAC-OSLHF method shows a much better convergence behavior. Moreover, the GAC-OSLHF method as a Kohn-Sham method, in contrast to the ROHF approach, represents a framework which allows also for a treatment of correlation besides an exchange by appropriate functionals. In contrast to the common time-dependent density-functional methods, the GAC-OSLHF approach is capable of treating doubly or multiply excited states and can be easily applied to molecules with an open-shell ground state. On the nodal planes of the energetically highest occupied orbital, the local multiplicative GAC-OSLHF exchange potential asymptotically approaches a different, i.e., nonzero, value than in other regions, an asymptotic behavior which is known from exact Kohn-Sham exchange potentials of ground states of molecules.  相似文献   

7.
Two related methods to calculate the Kohn-Sham correlation energy within the framework of the adiabatic-connection fluctuation-dissipation theorem are presented. The required coupling-strength-dependent density-density response functions are calculated within exact-exchange time-dependent density-functional theory, i.e., within time-dependent density-functional response theory using the full frequency-dependent exchange kernel in addition to the Coulomb kernel. The resulting resolution-of-identity exact-exchange random-phase approximation (RI-EXXRPA) methods in contrast to previous EXXRPA methods employ an auxiliary basis set (RI basis set) to improve the computational efficiency, in particular, to reduce the formal scaling of the computational effort with respect to the system size N from N(6) to N(5). Moreover, the presented RI-EXXRPA methods, in contrast to previous ones, do not treat products of occupied times unoccupied orbitals as if they were linearly independent. Finally, terms neglected in previous EXXRPA methods can be included, which leads to a method designated RI-EXXRPA+, while the method without these extra terms is simply referred to as RI-EXXRPA. Both EXXRPA methods are shown to yield total energies, reaction energies of small molecules, and binding energies of noncovalently bonded dimers of a quality that is similar and in some cases even better than that obtained with quantum chemistry methods such as Mo?ller-Plesset perturbation theory of second order (MP2) or with the coupled cluster singles doubles method. In contrast to MP2 and to conventional density-functional methods, the presented RI-EXXRPA methods are able to treat static correlation.  相似文献   

8.
We examine the time-dependent density functional theory (TD-DFT) equations for calculating excitation energies in solids with Gaussian orbitals and analytically show that for semilocal functionals, their lowest eigenvalue collapses to the minimum band orbital energy difference. With the introduction of nonlocal Hartree-Fock-type exchange (as in hybrid functionals), this result is no longer valid, and the lowest TD-DFT eigenvalue reflects the appearance of excitonic effects. Previously reported "charge-transfer" problems with semilocal TD-DFT excitations in molecules can be deduced from our analysis by taking the limit to infinite lattice constant.  相似文献   

9.
A state-specific scheme for time-dependent density functional theory (SS-TDDFT) based on the Davidson algorithm is presented. SS-TDDFT is a method devised for speeding up TDDFT calculations by screening transitions that contribute to a specific excitation. By applying this method to calculations of the low-lying excitation energies of test molecules (N2, CO, H2CO, C2H4 and C6H6), water clusters and polyenes, we found that SS-TDDFT accurately reproduced the excitation energies of standard TDDFT while drastically reducing the rank of the TDDFT response matrix without loss of accuracy. We have thus formulated TDDFT that works more efficiently and economically for memory storage.  相似文献   

10.
We study the pi*<--pi singlet excitations of the pi-conjugated oligomers of polyacetylene, polydiacetylene, polybutatriene, polythiophene, poly(para-phenylene vinylene), and the lowest singlet excitations of the hydrogen chain. For this we used time-dependent current-density-functional theory within the Vignale-Kohn and adiabatic local density approximations. By studying the dependence of the excitation spectrum on the chain length we conclude that the reduction of the static polarizability when using the Vignale-Kohn functional has two origins. First, the excitation energies of transitions with a large transition dipole are shifted upward. Second, the character of the transition between the lowest occupied and highest unoccupied molecular orbitals and the oscillator strength of the lowest transition within the adiabatic local density approximation is transferred to higher transitions. The lowest transitions that have a considerable oscillator strength obtained with the Vignale-Kohn functional have excitation energies that are in most cases in better agreement with available reference data than the adiabatic local density approximation.  相似文献   

11.
The Sakurai-Sugiura projection (SS) method was implemented and numerically assessed for diagonalization of the Hamiltonian in time-dependent density functional theory (TDDFT). Since the SS method can be used to specify the range in which the eigenvalues are computed, it may be an efficient tool for use with eigenvalues in a particular range. In this article, the SS method is applied to core excited calculations for which the eigenvalues are located within a particular range, since the eigenvalues are unique to atomic species in molecules. The numerical assessment of formaldehyde molecule by TDDFT with core-valence Becke's three-parameter exchange (B3) plus Lee-Yang-Parr (LYP) correlation (CV-B3LYP) functional demonstrates that the SS method can be used to selectively obtain highly accurate eigenvalues and eigenvectors. Thus, the SS method is a new and powerful alternative for calculating core-excitation energies without high computation costs.  相似文献   

12.
The present study serves two purposes. First, we evaluate the ability of present time-dependent density functional response theory (TDDFRT) methods to deal with avoided crossings, i.e., vibronic coupling effects. In the second place, taking the vibronic coupling effects into account enables us, by comparison to the configuration analysis in a recent ab initio study [J. Chem. Phys. 115, 6438 (2001)], to identify the neglect of double excitations as the prime cause of limited accuracy of these linear response based TDDFRT calculations for specific states. The "statistical averaging of (model) orbital potentials (SAOP)" Kohn-Sham potential is used together with the standard adiabatic local-density approximation (ALDA) for the exchange-correlation kernel. We use the N2 molecule as prototype, since the TDDFRT/SAOP calculations have already been shown to be accurate for the vertical excitations, while this molecule has a well-studied, intricate vibronic structure as well as significant double excitation nature in the lowest 1Pi(u) state at elongated bond lengths. A simple diabatizing scheme is employed to obtain a diabatic potential energy matrix, from which we obtain the absorption spectrum of N2 including vibronic coupling effects. Considering the six lowest dipole allowed transitions of 1Sigma(u)+ and 1Pi(u) symmetry, we observe a good general agreement and conclude that avoided crossings and vibronic coupling can indeed be treated satisfactorily on the basis of TDDFRT excitation energies. However, there is one state for which the accuracy of TDDFRT/ALDA clearly breaks down. This is the state for which the ab initio calculations find significant double excitation character. To deal with double excitation character is an important challenge for time-dependent density functional theory.  相似文献   

13.
A density matrix based time-dependent density functional theory is extended in the present work. Chebyshev expansion is introduced to propagate the linear response of the reduced single-electron density matrix upon the application of a time-domain delta-type external potential. The Chebyshev expansion method is more efficient and accurate than the previous fourth-order Runge-Kutta method and removes a numerical divergence problem. The discrete Fourier transformation and filter diagonalization of the first-order dipole moment are implemented to determine the excited state energies. It is found that the filter diagonalization leads to highly accurate values for the excited state energies. Finally, the density matrix based time-dependent density functional is generalized to calculate the energies of singlet-triplet excitations.  相似文献   

14.
将求解标准特征值问题的Davidson方法推广到求解大型广义特征值问题, 并给出了相应的块迭代算法. 经过理论分析和数值计算发现, 如果迭代过程不发散, 则块迭代算法经过有限次迭代一定收敛. 设矩阵的维数为n, 要求的特征值和相应特征向量的个数为k, 初始的子空间大小为r(r≥k),迭代次数为m,则它们之间满足关系n=r+km. 通过调节子空间大小, 就得到迭代次数m的正整数解.  相似文献   

15.
Starting from a formally exact density-functional representation of the frequency-dependent linear density response and exploiting the fact that the latter has poles at the true excitation energies, we develop a density-functional method for the calculation of excitation energies. Simple additive corrections to the Kohn-Sham single-particle transition energies are derived whose actual computation only requires the ordinary static Kohn-Sham orbitals and the corresponding eigenvalues. Numerical results are presented for spin-singlet and triplet energies. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
A time-dependent quasirelativistic density-functional theory for excitation energies of systems containing heavy elements is developed, which is based on the zeroth-order regular approximation (ZORA) for the relativistic Hamiltonian and a noncollinear form for the adiabatic exchange-correlation kernel. To avoid the gauge dependence of the ZORA Hamiltonian a model atomic potential, instead of the full molecular potential, is used to construct the ZORA kinetic operator in ground-state calculations. As such, the ZORA kinetic operator no longer responds to changes in the density in response calculations. In addition, it is shown that, for closed-shell ground states, time-reversal symmetry can be employed to simplify the eigenvalue equation into an approximate form that is similar to that of time-dependent nonrelativistic density-functional theory. This is achieved by invoking an independent-particle approximation for the induced density matrix. The resulting theory is applied to investigate the global potential-energy curves of low-lying LambdaS- and omega omega-coupled electronic states of the AuH molecule. The derived spectroscopic parameters, including the adiabatic and vertical excitation energies, equilibrium bond lengths, harmonic and anharmonic vibrational constants, fundamental frequencies, and dissociation energies, are in good agreement with those of time-dependent four-component relativistic density-functional theory and ab initio multireference second-order perturbation theory. Nonetheless, this two-component relativistic version of time-dependent density-functional theory is only moderately advantageous over the four-component one as far as computational efforts are concerned.  相似文献   

17.
An analytical excitation energy gradient of long-range corrected time-dependent density functional theory (LC-TDDFT) is presented. This is based on a previous analytical TDDFT gradient formalism, which avoids solving the coupled-perturbed Kohn-Sham equation for each nuclear degree of freedom. In LC-TDDFT, exchange interactions are evaluated by combining the short-range part of a DFT exchange functional with the long-range part of the Hartree-Fock exchange integral. This LC-TDDFT gradient was first examined by calculating the excited state geometries and adiabatic excitation energies of small typical molecules and a small protonated Schiff base. As a result, we found that long-range interactions play a significant role even in valence excited states of small systems. This analytical LC-TDDFT gradient was also applied to the investigations of small twisted intramolecular charge transfer (TICT) systems. By comparing with calculated ab initio multireference perturbation theory and experimental results, we found that LC-TDDFT gave much more accurate absorption and fluorescence energies of these systems than those of conventional TDDFTs using pure and hybrid functionals. For optimized excited state geometries, LC-TDDFT provided fairly different twisting and wagging angles of these small TICT systems in comparison with conventional TDDFT results.  相似文献   

18.
We present an implementation for considering finite lifetime of the electronic excited states into linear-response theory within time-dependent density-functional theory. The lifetime of the excited states is introduced by a common phenomenological damping factor. The real and imaginary frequency-dependent polarizabilities can thus be calculated over a broad range of frequencies. This allows for the study of linear-response properties both in the resonance and nonresonance cases. The method is complementary to the standard approach of calculating the excitation energies from the poles of the polarizability. The real and imaginary polarizabilities can then be calculated in any specific energy range of interest, in contrast to the excitation energies which are usually solved only for the lowest electronic states. We have verified the method by investigating the photoabsorption properties of small alkali clusters. For these systems, we have calculated the real and imaginary polarizabilities in the energy range of 1-4 eV and compared these with excitation energy calculations. The results showed good agreement with both previous theoretical and experimental results.  相似文献   

19.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

20.
Adiabatic time-dependent density functional theory fails for excitations of a heteroatomic molecule composed of two open-shell fragments at large separation. Strong frequency dependence of the exchange-correlation kernel is necessary for both local and charge-transfer excitations. The root of this is the static correlation created by the step in the exact Kohn-Sham ground-state potential between the two fragments. An approximate nonempirical kernel is derived for excited molecular dissociation curves at large separation. Our result is also relevant when the usual local and semilocal approximations are used for the ground-state potential, as static correlation there arises from the coalescence of the highest occupied and lowest unoccupied orbital energies as the molecule dissociates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号