首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WD Kulatilaka  JR Gord  VR Katta  S Roy 《Optics letters》2012,37(15):3051-3053
We discuss photolytic-interference-free, high-repetition-rate imaging of reaction intermediates in flames and plasmas using femtosecond (fs) multiphoton excitation. The high peak power of fs pulses enables efficient nonlinear excitation, while the low energy nearly eliminates interfering single-photon photodissociation processes. We demonstrate proof-of-principle, interference-free, two-photon laser-induced fluorescence line imaging of atomic hydrogen in hydrocarbon flames and discuss the method's implications for certain other atomic and molecular species.  相似文献   

2.
We have developed a two-dimensional (2D) Fourier-transform femtosecond spectroscopy technique for the visible spectral region. Three-pulse photon echo signals are generated in a phase-matched noncollinear four-wave mixing box geometry that employs a 3-kHz repetition-rate laser system and optical parametric amplification. Nonlinear signals are fully characterized in amplitude and phase by spectral interferometry. Unlike for previous setups, we achieve long-term phase stability by employing diffractive optics and interferometric accuracy of excitation-pulse time delays by using movable glass wedges. As an example of this technique, 2D correlation and relaxation spectra at 600 nm are shown for a solution of Nile Blue dye in acetonitrile.  相似文献   

3.
We report two-dimensional imaging through a liquid scattering medium by noncollinear femtosecond parametric amplification in a reflection configuration. The experiment presented permits direct observation at video rate of two-dimensional images with 24-mum depth resolution and 90-mum transverse resolution for an area with a 2.5-mm diameter on the object. These resolutions are achievable through a turbid phantom with a depth near 12 scattering mean free paths in double pass.  相似文献   

4.
5.
We present a broadband two-dimensional transient absorption setup for the UV around 300 nm with a time resolution of 150 fs. A narrowband, frequency tunable pump pulse and a broadband probe pulse are generated from the output of a noncollinear optical parametric amplifier operated at 20 kHz repetition rate and combined in a spectrally resolved transient absorption experiment. The high repetition rate and low noise of the setup allow us to acquire high quality two-dimensional data as a function of time delay with an unsurpassed frequency window of 10,000 and 8000 cm(-1) along the probe and pump axis, respectively. The performance of the setup is demonstrated on 2,5-Diphenyloxazol dissolved in cyclohexane.  相似文献   

6.
A method is proposed for obtaining three simultaneous projections of a target from a single radiation pulse, which also allows the relative orientation of successive targets to be determined. The method has application to femtosecond x-ray diffraction, and does not require solution of the phase problem. We show that the principal axes of a compact charge-density distribution can be obtained from projections of its autocorrelation function, which is directly accessible in diffraction experiments. The results may have more general application to time resolved tomographic pump-probe experiments and time-series imaging.  相似文献   

7.
An original femtosecond Cr(4+):forsterite laser source associated with a nonlinear optical correlator was used for imaging through scattering media with 1220-nm light. The system, which operates as an ultrafast optical gate by sum-frequency generation in a nonlinear crystal, was able to detect the light reflected from a resolution chart hidden in a turbid medium, at an attenuation of as much as 15 mean free paths. When the object was illuminated with a collimated beam, real-time two-dimensional images were obtained, with a maximum transverse resolution of ~20 microm.  相似文献   

8.
An improved Kerr-based set-up for time-resolved emission spectroscopy in the femtosecond regime is presented. The Kerr gate is switched by femtosecond NIR pulses of 1100 nm. Thereby, practically no background emission of the Kerr medium is observed for wavelengths smaller than 1000 nm. This allows for the simultaneous acquisition of emission spectra in the spectral range from 350 nm to 1000 nm. By employing mainly reflective optics, the dispersion of the gate set-up could be kept below 0.2 ps (500–800 nm). The time resolution of the set-up was 100 fs. Its performance is demonstrated by recording the spectro-temporal behaviour of a white-light continuum and of the fluorescence emissions of -carotene and an azobenzene derivative. PACS 32.50.+d; 42.65.Re  相似文献   

9.
In this paper we present time-wavelength assignment algorithms that consider the following system parameters: (1) the system hardware in terms of the transmitters' and receivers' tuning capabilities (slow or fast tuning) and (2) the traffic matrix. The ulgorithms' objective is to maximize the bandwidth efficiency, i.e., to minimize the frame duration. Each algorithm will be suitable for a different set of system parameters. We present trade-offs between the system hardware and the algorithm' performance for various traffic patterns. These trade-offs can be used as guidelines for the system designer that needs to decide the system hardware for a given traffic pattern and required system performance. Moreouer, for a given system hardware and traffic patterns, each node can distributively decide which algorithm should be used, i.e., the algorithm that will maximize the system performance.  相似文献   

10.
王洪建  叶雁  阳庆国  李泽仁  刘红杰 《强激光与粒子束》2022,34(3):031015-1-031015-6
在微介观诊断中往往因为空间限制,选择具有亮度高、单色性好、对比度强的特征谱线,而忽略了轫致辐射谱线。率先实验设计了特征谱线和轫致辐射谱线的双光谱诊断X射线光源的方法,在中国工程物理研究院“星光Ⅲ”激光装置飞秒激光束靶室上进行实验,激光功率密度大于1.6×1018 W/cm2,脉宽为30 fs,45°入射靶面。在入射靶前侧,设计了用于特征光谱成像的针孔成像光路,获得Cu纳米颗粒靶产生的特征X射线的焦斑图像,为76 μm,大于刃边方法测得半径为54 μm的焦斑。在靶后侧,设计了轫致辐射成像光路,利用PIX射线CCD获得2×5的圆形Ta组图像。实验表明,利用双光谱成像设计合理,适合微介观材料动态诊断,提高诊断效率。  相似文献   

11.
The characterization and performance of the femtosecond fluorescence up-conversion microscope is reported in this paper. This new fluorescence microscope is a combination of the frequency up-conversion technique and a confocal optical configuration, which simultaneously achieves femtosecond time and nanometer space resolution. The femtosecond time resolution was evaluated by measuring the rise up of time-resolved fluorescence from a dye molecule, and it was 520 fs and 460 fs with 100× (N.A.=1.3) and 40× (N.A.=0.75) objective lenses, respectively. The best transverse (XY) resolution was 0.34 m with the 100× objective lens for 400 nm excitation. An axial (Z) resolution as high as 1.1 m was obtained for 600 nm fluorescence detection with a 50 m pinhole and a 100× objective lens. The axial resolution was remarkably improved compared with ordinary confocal microscopes owing to the up-conversion process, which requires spatial overlap between the tightly focused gate and the fluorescence beams. Femtosecond time-resolved fluorescence measurements were performed for micro-meter sized particles in liquids, fluorescent beads and C519/toluene micro droplets, by using the laser trapping technique. The high potential of the fluorescence up-conversion microscope was demonstrated. PACS 78.47.+p; 87.64.-t; 82.53.-k  相似文献   

12.
Achieving super-resolution has become a scientific imperative for remote imaging of objects and scenes needing increased detail and has motivated the development of various laser-based techniques. We demonstrate a scheme which achieves subdiffraction imaging of remote objects by using femtosecond laser filaments. The use of laser filaments for imaging is destined to have applications in many environments.  相似文献   

13.
A new diffraction-based method is proposed and demonstrated for simultaneous shaping of both the phase and amplitude of femtosecond laser pulses by use of a phase-only two-dimensional spatial light modulator. The method suppresses certain types of temporal replica features ordinarily observed in femtosecond pulse shaping owing to imperfections in modulator devices and allows for multiplexed outputs suitable for use in various applications.  相似文献   

14.
We report noncollinear, degenerate four-wave mixing experiments that employ a new device based on two-dimensional femtosecond pulse shaping that delays and modulates all incident fields. Heterodyne detection is easily implemented due to the full phase stability of the device.  相似文献   

15.
The fluorescence spectrum of ethanol molecules induced by femtosecond laser pulses has been recorded as the fingerprint of the molecules. It was demonstrated that, if this is combined with a LIDAR technique, the fluorescence from pollutants in the atmosphere could be detected over a long distance. PACS 42.68.Wt; 42.62.Fi; 42.65.Re  相似文献   

16.
Our goal is to achieve the precise quantitative imaging of tissue elasticity in clinical settings. In the present study, we measured basic ultrasonic characteristics of atherosclerosis by two-dimensional (2D) intravascular tissue velocity imaging. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, the correlation coefficient between two consecutive frames was calculated in the rotational direction and the rotational disuniformity was corrected to obtain the maximum correlation coefficient. Then, the polar coordinate images were converted into rectangular coordinate images and the images were divided into 64 by 64 square shaped regions of interest (ROIs). The correlation and displacement of the ROIs between the consecutive two frames were calculated by template matching method. Two-dimensional tissue velocity was defined as the vectors of displacement of ROI with 0.7 and more correlation. IVUS studies were performed in directional coronary atherectomy (DCA) procedures. The specimens excised by DCA were stained with Elastica-Masson's trichrome staining and CD68 immunochemical staining. Eleven cases (including two no re-flow cases and one perforation case) were intraoperatively observed by IVUS and the specimens obtained by DCA were observed by optical microscopy. The specimen from homogeneous 2D strain was collagen dominant fibrosis and the specimen from a lesion with complex vectors contained CD68 positive cells and degenerated collagen fibers, which indicated the plaque was vulnerable.  相似文献   

17.
采用近红外飞秒激光辐照浸泡在硫酸溶液中的N型单晶硅片,激光波长800 nm,脉宽200 fs,重频1 kHz,平均功率为100 mW,而硫酸溶液的质量分数分别选择为0.1%和1%。辐照后硅表面呈直径为5~8 mm,高度15 mm的柱型结构。分析其荧光特性,并通过比较硅材料表面微结构与激光光源、扫描参数、硅片背景环境的关系,确定最佳辐照条件为激光扫描速度750 mm/s,扫描间距5 mm/s。最终在厚度0.5 mm、直径26 mm的硅片上获得10 mm×10 mm的方形扫描区域,荧光光谱显示激光扫描后的区域在700 nm附近有很强的荧光发射。分析结果表明飞秒激光扫描改变了样品的表面微结构尺寸,增大了吸收面积,扩展了荧光激发波长,有效提高了样品的吸收效率和荧光发光相对强度(超过扫描前发光相对强度的2倍),荧光发射谱的变化是由量子限制效应和表面态模型共同作用的结果。  相似文献   

18.
飞秒激光作用下的硅表面微结构及发光特性   总被引:2,自引:1,他引:2       下载免费PDF全文
 采用近红外飞秒激光辐照浸泡在硫酸溶液中的N型单晶硅片,激光波长800 nm,脉宽200 fs,重频1 kHz,平均功率为100 mW,而硫酸溶液的质量分数分别选择为0.1%和1%。辐照后硅表面呈直径为5~8 mm,高度15 mm的柱型结构。分析其荧光特性,并通过比较硅材料表面微结构与激光光源、扫描参数、硅片背景环境的关系,确定最佳辐照条件为激光扫描速度750 mm/s,扫描间距5 mm/s。最终在厚度0.5 mm、直径26 mm的硅片上获得10 mm×10 mm的方形扫描区域,荧光光谱显示激光扫描后的区域在700 nm附近有很强的荧光发射。分析结果表明飞秒激光扫描改变了样品的表面微结构尺寸,增大了吸收面积,扩展了荧光激发波长,有效提高了样品的吸收效率和荧光发光相对强度(超过扫描前发光相对强度的2倍),荧光发射谱的变化是由量子限制效应和表面态模型共同作用的结果。  相似文献   

19.
A three-dimensional reflectance scanning optical microscope based on the nonlinear optical phenomenon of second-harmonic generation is presented. A mode-locked Ti:sapphire laser producing <90-fs pulses at ~790nm was used, and the images were constructed by scanning of an object, which possessed local second-order nonlinearity, relative to a focused spot from the laser. The second-harmonic light at ~395nm generated by the specimen was separated from the fundamental beam by use of dichroic and interference filters and was detected by a photodiode. The technique was then used to characterize the distribution of second-order nonlinearity and microstructure of the nonlinear material lithium triborate.  相似文献   

20.
Motz JT  Yelin D  Vakoc BJ  Bouma BE  Tearney GJ 《Optics letters》2005,30(20):2760-2762
A method for obtaining fluorescence images with a high number of resolvable points by using spectral and frequency encoding is presented. Broadband excitation light is encoded with a wavelength-dependent frequency modulation and dispersed onto the sample with a grating to simultaneously illuminate an entire image line. The Fourier transform of the frequency-encoded fluorescence emission provides one line of the image. Mechanical scanning along a direction orthogonal to the wavelength-encoded axis allows creation of the two-dimensional fluorescent image. This method is applicable for developing submillimeter diameter endoscopes. The principles of the technique are validated by imaging indocyanine green fluorescence in microfluidic channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号