首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The adhesion of filamentous microbial cells such as Trichoderma reesei was studied by using carriers covered with polymers which were prepared by the radiation polymerization of ionic monomers. The weight of the cells adhering to the carriers increased with increasing cationic monomer content, indicating that the surface of the polymers prepared from cationic and hydrophobic monomers is suitable for the adhesion of the cells. The production of cellulase in the cells adhered to polymers from cationic monomers was higher than that in cells adhered to polymers prepared from anionic monomers. The growth of the cells adhered to the surfaces of the polymers was affected by the hydrophilicity of the polymers.  相似文献   

2.
A new preparative route to photocrosslinkable polymers in which the polymers are produced directly from the polymerization of vinyl monomers having photocrosslinkable groups has been investigated. The photosensitive resins thus produced have higher sensitivity and resolution than conventional photosensitive resins. The monomers were synthesized from the esterification of vinylphenols or vinyl β-chloroethyl ether with cinnamic acid, β-styrylacrylic acid, and their homologs, and from the etherification of vinyl β-chloroethyl ether with hydroxychalcones. Homopolymerizations of these monomers and their copolymerizations with other comonomers were investigated with the use of both radical and ionic initiators. It is shown that radical polymerization of the monomers gave soluble polymers only at low conversion. Anionic initiators did not initiate polymerization. Cationic polymerization imparted soluble polymers in high yield, except for the monomers bearing cyano groups, which generally gave insoluble polymers. Infrared and NMR spectroscopic investigation of the cationically obtained soluble polymers and comparative investigation by cationic polymerization of model compounds indicated that polymerization of the monomers proceeds through the vinyl double bond without affecting the photosensitive unsaturated bond. Thus, linear photocrosslinkable polymers with an intact photoreactive group may be produced by cationic polymerization. In general, these polymers have uniform structure and modifiable physical properties depending on the monomer used. The polymer thus obtained from β-vinyloxyethyl cinnamate has been shown to have excellent properties for use as a photo-resist.  相似文献   

3.
This article summarizes our recent efforts to chemical recycling of polymeric materials based on the equilibrium polymerization character of cyclic monomers. Spiro orthoesters ( SOE s), bicyclo orthoester, cyclic carbonates, and dithiocarbonates undergo ring-opening polymerization to afford the corresponding polymers, and the resulting polymers depolymerize to give the starting monomers under cationic or anionic conditions. Further, crosslinking and decrosslinking systems of bifunctional SOE s and a polymer having SOE moiety in the side chain are described.  相似文献   

4.
Typical platinum, rhodium and cobalt hydrosilation catalysts have been found to catalyze the ring-opening polymerization of many different types of heterocyclic monomers. In particular, epoxide monomers undergo especially rapid polymerization with these catalysts. Investigations have shown that in the case of platinum and rhodium catalysts these polymerizations proceed at the surface of the metal colloids by means of a novel cationic mechanism. In contrast, polymerizations with octacarbonyldicobalt take place by a homogeneous cationic mechanism. In all cases, polymerization appears to proceed by the formal attack of a positively charged silicon species on the heteroatom with the formation of a silicon-oxygen bond. Interesting comb, graft, block and network polymers can be prepared by carrying out simultaneous epoxide ring-opening and hydrosilation reactions using these catalysts.  相似文献   

5.
The application of living anionic polymerization techniques for the functionalization of polymers and block copolymers is reviewed. The attachment of functional groups to polymeric chains of predetermined lengths and narrow molecular weight distributions is described. Carboxyls, hydroxyls, amines, halogens, double bonds, and many other functional groups can be placed at one or two ends in the center or evenly spaced along polymeric chains. Subsequent transformations of the functional groups further contribute to the versatility of such treatments. General methods based on the use, as terminators, of substituted haloalkanes, as well as the addition of living polymers or their initiators to diphenylethylenes, substituted with appropriate functional groups or molecules, are discussed. Another approach, based on the living polymerization of monomers with protected functional groups, is also discussed. It has been used for the preparation of polymers and copolymers with evenly spaced functional groups. The combination of living anionic polymerization techniques with controlled radical and cationic polymerizations is also described. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2116–2133, 2002  相似文献   

6.
The synthesis and polymerizability of imine C?N monomers is surveyed. The investigated imines were either far more reactive than similarly substituted C?C or C?O monomers, or too stable to polymerize. Imines with electron‐attracting substituents on N favor polymerization by anionic mechanism, but led only to low molecular weight polymers. Imines with a donor substituent on N, such as N‐arylmethyleneimines, polymerized by cationic or anionic mechanism. 1‐ and 2‐Aza‐1,3‐butadienes were also rather unstable and polymerized to oligomers. The symmetrically substituted 2,3‐diaza‐1,3‐butadienes could be purified and polymerized successfully using anionic initiators, resulting in both 1,4‐ and 1,2‐structures in the polymer backbone, depending on the substituents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
In order to obtain quantitative results on the mechanism of ring-opening polymerization of ethylene oxide, 13C satellite spectra of dideuterioethylene oxides and their polymers prepared by anionic, cationic, and coordination catalysts were measured with deuterium decoupling and analyzed. The ratios of the threo to erythro polymers were same as those of the cis to trans monomers. Therefore, it is concluded that the ring-opening polymerizations of ethylene oxide proceed almost entirely with inversion of configuration, confirming the results obtained by the analysis of the infrared spectra of the deuterated polymers by Price, Tadokoro and co-workers.  相似文献   

8.
Methylenecyclobutene (MCB) and 1-methyl-3-methylenecyclobutene (MMCB) were synthesized, characterized, and polymerized by anionic and cationic initiators. Structural analyses of the polymers were carried out by infrared and NMR spectros-copy. The cationic polymerization of MCB appeared to proceed entirely by a 1,5-propagation mechanism to form low molecular weight polymers in low yields. Anionic polymerization of this monomer, on the other hand, proceeded primarily through a 1,2-propagation path, again forming only low molecular weight polymeric products in low yield. In contrast to MCB, the methyl-substituted monomer, MMCB, polymerized readily with cationic initiators to produce unusually high molecular weight polymers in high conversions. On the basis of both infrared and NMR spectroscopic analyses, it was concluded that the polymers also contained essentially only 1,5-addition repeating units. Anionic initiators such as n-BuLi were unable to induce polymerization of this monomer, but polymerization by Ziegler-Natta catalysts proceeded readily to yield polymers virtually identical in structure and molecular weight to those obtained with cationic initiators.  相似文献   

9.
The present paper discusses the ability of macromonomers to undergo polymerization and copolymerization with acrylic and vinylic monomers. These macromonomers have been synthesized by classical deactivation reactions. Special interest was devoted to macromonomers fitted with polymerizable methylmethacrylate end-groups. The anionic homopolymerization of ω-methacryloyloxy-polystyrene macromonomers was studied in detail and the influence of the molar mass of the macromonomer on the apparent propagation constant was determined. The anionic homopolymerization of ω-methacryloyloxy poly(ethylene oxide) macro-monomers was also examined. In both cases, lithium chloride has to be added in order to reach a better control of the reaction. The dilute solution properties of these polystyrene polymacromonomers have been studied. Some preliminary attempts to apply that anionic homopolymerization of macromonomers to the preparation of “dumbbell” and “palmtree” polymers were presented.  相似文献   

10.
The morphology of conjugate polymers (such as poly(ethylenedioxythiophene), poly(pyrrole), and poly(aniline)) can be controlled in their polymerization processes, by applying the concept of the templating method to oxidative polymerization. As oxidative polymerization of these monomers produces cationic intermediates, the anionic assemblies can act as potential templates due to the mutual electrostatic attractive force. Oxidative polymerization of ethylenedioxythiophene (EDOT), pyrrole, and aniline was carried out using helical superstructures of synthetic lipid assemblies as templates. Interestingly, we have found that oxidative polymerization of these monomers results in novel polymeric aggregates, such as a helical-tape structure and an intertwined helical structure, and that both the right-handed and left-handed helical structures can be created by a change in the hydrophilic head groups. This is the first example of helical superstructures composed of conjugate polymers that have been designed utilizing a convenient templating method.  相似文献   

11.
The cationic polymerization of α- and β-pinene oxide has been studied. By use of boron trifluoride or phosphorus penta-fluoride these monomers may be oligomerized (DPn ? 6–7). According to 13C-NMR spectroscopy and other evidence, the four-membered ring present in these monomers opens or expands during reaction. The repeat structures of these polymers suggest a unique oxonium ion-carbenium ion propagation mechanism. Simultaneously with the oligomerization, these epoxides also yield large amounts of aldehydes by a related isomerization.  相似文献   

12.
The ionic polymerization of vinyl monomers possessing aromatic and heterocyclic functional groups has not been studied in any systematic fashion. Only in a few isolated cases have detailed mechanistic and structural studies been reported. The anionic polymerization of a number of vinylanthracene monomers has recently been investigated and some rationalization of this system is presented. The cationic and anionic polymerization of the N-, 3-, and 2-vinylcarbazole series of monomers is discussed in some detail. The important role of vinyl aromatic/vinyl heterocyclic monomers, i.e., diphenylethylene and the vinylcarbazoles, in elucidating the mechanistic aspects of cationic polymerization, “change transfer” polymerization, and photoionic polymerization is considered.  相似文献   

13.
1H NMR chemical shifts of the protons in the vinyl groups of monomers are correlated with their reactivities in anionic, coordinated anionic, and cationic polymerizations. The relative reactivities of styrenes in anionic addition reactions with living polystyrene increase linearly with the chemical shift of the proton trans to the substituent (δH1). Only the plot for 2,4,6-trimethylstyrene deviates very much from the linear relation because of the large steric hindrance. The relative reactivities of methacrylates in anionic copolymerizations increase with increasing chemical shifts of protons attached to the β-carbon of methacrylates. In cationic polymerizations of styrenes, the relative reactivities decrease with increasing δH1. The relative reactivities in coordinated anionic polymerizations with Ti-containing Ziegler initiators show a typical feature of cationic polymerization, and those with V-containing initiators show a typical feature of anionic polymerization, indicating the importance of the coordination process in the propagation reaction with Ti-containing initiator systems. From the results, it can be concluded that the chemical shifts of the protons attached to the β-carbon of vinyl monomers can be used as a practical measure of the reactivity of vinyl monomers in ionic polymerizations and also as a tool for understanding the mechanism of polymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2134–2147, 2002  相似文献   

14.
Chloral polymers prepared by anionic polymerization have alkoxide endgroups as terminal ends at the end of this polymerization. The initiating anion has, as expected, no influence on the type of terminal group formed. Polychloral with terminal alkoxide ends degrades easily thermally to monomeric chloral. Alkoxide endgroups in polychloral do not readily react with alkylating or acylating agents, although partial stabilization has been observed when alkoxide-terminated polymers were allowed to stand for periods of time; the endgroups seem to react either with impurities or with excess chloral in side reactions. With protic acids, alkoxide-terminated polychloral is transformed into hydroxyl-terminated polymer of higher thermal stability. Studies of the initiation step of the chloral polymerization revealed that above the ceiling temperature of polymerization, strong nucleophiles, such as soluble tertiary butoxide, initiate quantitatively, but polymerization does not proceed until the mixture is cooled. When chloral is initiated with weaker nucleophiles such as chloride or carboxylates, the initiation equilibrium is not on the side of the initiated species, although it shifts effectively as polymerization proceeds; with carboxylates as initiators the ester group has been found incorporated as the initial endgroup in polychloral. With sufficient amounts of lithium tertiary butoxide as anionic initiator, polychloral of low molecular weight was prepared. This polymer does not react with end-capping reagents (other than PCl5) as does high molecular weight polychloral; in spite of considerable effort it was not possible to prepare low molecular weight soluble polychloral or oligomeric polychloral. Polychloral prepared with cationic initiators is thermally more stable than unstabilized anionically initiated polychloral but is generally crumbly and incoherent. The end-groups of such polymers are usually hydroxyl endgroups. Identification of endgroups of the polymers has been done where possible by IR spectroscopy, for the initiation reaction by NMR spectroscopy, but for high molecular weight insoluble polymers almost exclusively by comparative thermal polymer degradation.  相似文献   

15.
A new method of block polymer preparation using combined anionic and free radical polymerization was investigated. In the method the first monomer was polymerized anionically. The resulting polymeric anions were then reacted with an episulfide to form a polymer with mercaptan end-groups. This mercapto—polymer was mixed with a second monomer(s) in an inert solvent for the free radical polymerization. Conventional free radical initiation methods were used to initiate the polymerization of the second monomer but because of the high chain transfer constant of the mercaptan groups, a large number of the free radical chains would grow from the first polymer to form a block polymer. Block polymers difficult or impossible to make by direct anionic polymerization can thus be prepared. Several block polymers, including the new thermoplastic elastomers, poly[(styrene-co-acrylonitrile)-b-butadiene-b-(styrene-co-acrylonitrile)] and poly(bromostyrene-b-butadiene-b-bromostyrene) were prepared by this method.  相似文献   

16.
活性阳离子聚合法合成嵌段共聚物的研究进展   总被引:2,自引:0,他引:2  
在80年代,阳离子聚合研究的一个最重要突破可能就是活性阳离子聚合。目前为止,有关活性阳离子聚合的新引发体系,新单体及合成应用等方面已取得巨大进展,本综述主要介绍利用活性阳离子聚合合成二、三元嵌段和多元嵌段共聚物的研究成果。  相似文献   

17.
A kinetic study of the anionic polymerization of octamethylcyclotetrasiloxane (D4) in aqueous emulsion has been carried out in the presence of ionic additives. The rate of polymerization of several cyclosiloxanes has been compared, leading to additional evidence for an interfacial mechanism of polymerization. The emulsion process has been applied to the cationic polymerization of D4 and of tetramethylcyclotetrasiloxane (DH4) initiated by dodecylbenzenesulfonic acid. Very efficient for the synthesis of linear polymethylhydrogenosiloxanes (PMHS), these conditions did not seem suitable for the polymerization of D4. The extension of the process to other heterocyclic monomers is discussed through the anionic polymerization of phenylglycidylether.  相似文献   

18.
Ring-size and substitution greatly affect the permittivity and donor-acceptor properties of lactams and their derivatives as well as of the corresponding polymers. Permittivity changes occurring during bulk polymerization affect dissociation equilibria and the very high increase in permittivity during polymerization is responsible for the autoacceleration observed in the anionic polymerization of the seven-membered lactam. In diluted solution, pronounced effects of the nature of solvent or additive have been observed in anionic polymerization of substituted four-membered lactams. Whereas the initial rate of polymerization is independent of the monomer concentration, the apparent order in the monomer increases and the rate of polymerization in most solvents decreases during polymerization, except in solvents of very low polarity. Changes of permittivity and conductivity during and after polymerization indicate, that changes in the solvation and rearrangement of the growth center are responsible for its varying activity. These processes increase the reactivity during ageing of the living system. Similarly to other heterocyclic monomers, the cationic polymerization of N-acyllactams is rather insensitive to the permittivity of the reaction medium.  相似文献   

19.
Cationic polymerizations have long been industrialized; however, stimulus‐regulated cationic polymerization remains to be developed. An electrochemically controlled living cationic polymerization is presented for the first time. In the presence of external potential and organic‐based electrocatalyst, a series of monomers can be polymerized under a cationic chain‐transfer mechanism. The resulting polymers exhibit well‐defined molecular mass, narrow dispersity, and good chain‐end fidelity. By controlling the external potential to switch the electrocatalyst between its oxidized and reduced states, ON/OFF polymerization can be achieved. This method is a versatile way to a large range of monomers, including vinyl ether‐type and p‐substituted styrene‐type monomers. Given the sustainability feature and broad interest of electrochemical synthetic techniques, we envisaged that this method would lead a new direction of external regulated living ionic polymerization.  相似文献   

20.
The polymerization behavior of N-(p-vinyl)phenylacrylamide, synthesized from p-aminostyrene and acryloyl chloride by means of the Schotten-Baumann reaction was studied. Due to a marked difference in electron density between the two double bonds, this monomer provided soluble polymers by both cationic and anionic polymerization procedures, the cationic and anionic polymers mainly carrying, as side chains, the acrylamide and styrene moieties, respectively. The polymerization behavior of the residual double bonds was also investigated for both polymers, leading to crosslinked, insoluble products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号