首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
INTRODUCTIONSince Milkovich and Chiang[1] developed a method of preparing copolymers with uniform side chains by usingthe macromer technique, the synthesis of copolymers with uniform side chains from different macromers hasbeen studied extensively. Milkovich et al. reported the synthesis of polystyrene macromer through termination ofliving polystyrene anions with methacryloyl chloride and its copolymerization with butyl acrylate to formthermoplastic elastomer[2]. Rempp[3] obtained polyoxy…  相似文献   

2.
Recently, a research/development program has been initiated to investigate the kinetics of synthesis, characterization and applications of polyelectrolyte networks. The research on crosslinking involves both theoretical development and experimentation. Herein, is provided a summary of this work. In the experimental polymerization done to date, acrylic acid (AA)/N.N'-methylenebisacrylamide (BAM) was studied in considerable detail. The polymerization conditions were: temperature, 50°C; initial monomer concentration, 5 wt%, of which 1.0 mol% is BAM; K2S2O8(KPS) as the initiator, 10−3 mol/L; pH range, 1 − 13; sodium chloride concentrations up to 3.1 mol/L. Measurements included: monomer conversion, polymer composition, sol/gel fraction, swelling ratio, and the densities of primary cyclization, secondary cyclization and crosslinking. It was found that the effect of polymerization parameters on the resulting polymer network microstructure was dramatic, and in particular, the pH and ionic strength of the reaction medium were important parameters. In the theoretical studies, the Tobita-Hamielec kinetic gelation model was extended to incorporate the concept of ion pair interaction and the divinyl loop formation. The system was treated as a multi-component polymerization of acrylic acid, acrylate ion, acrylate ion pair and bisacrylamide. The model permits one to investigate the development of the crosslinking density distribution among primary polymer chains during the course of polymerization as a function of pH and ionic strength.  相似文献   

3.
Free-radical acrylic polymerizations of n-butyl methacrylate and n-butyl acrylate at temperatures above 120°C show significant departure from classic free-radical kinetics. An extended model of depropagation, where the equilibrium monomer concentration varies with temperature and polymer content, is postulated and shown to adequately explain the data for n-butyl methacrylate. Intramolecular chain transfer and scission is postulated to explain the apparent reduction in molecular weight and rate of polymerization seen in n-butyl acrylate polymerization, with supporting experimental evidence found via electrospray-ionization mass spectrometry.  相似文献   

4.
Copolymers of n-docosyl acrylate and acrylic acid were synthesized in tetrahydrofuran by conventional free radical polymerization using benzoyl peroxide as initiator. The increase in crystallinity of the copolymers with increasing C22 acrylate mole fraction was studied. It was found that even with very low mole fraction of C22 acrylate (0.14) in the polymer chain the copolymers shows significant crystallinity (crystallinity fraction 0.23 against 0.52 for homopolymer of C22 acrylate).  相似文献   

5.
A series of well‐defined amphiphilic graft copolymers, containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(butyl acrylate) side chains, were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) without any postpolymerization functionality modification followed by selective acidic hydrolysis of poly(tert‐butyl acrylate) backbone. tert‐Butyl 2‐((2‐bromopropanoyloxy)methyl)‐acrylate was first homopolymerized or copolymerized with tert‐butyl acrylate by RAFT in a controlled way to give ATRP‐initiation‐group‐containing homopolymers and copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) and their reactivity ratios were determined by Fineman‐Ross and Kelen‐Tudos methods, respectively. The density of ATRP initiation group can be regulated by the feed ratio of the comonomers. Next, ATRP of butyl acrylate was directly initiated by these macroinitiators to synthesize well‐defined poly(tert‐butyl acrylate)‐g‐poly(butyl acrylate) graft copolymers with controlled grafting densities via the grafting‐from strategy. PtBA‐based backbone was selectively hydrolyzed in acidic environment without affecting PBA side chains to provide poly(acrylic acid)‐g‐poly(butyl acrylate) amphiphilic graft copolymers. Fluorescence probe technique was used to determine the critical micelle concentrations in aqueous media and micellar morphologies are found to be spheres visualized by TEM. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2622–2630, 2010  相似文献   

6.
Three series of pressure‐sensitive adhesives were prepared with constant glass‐transition temperature, using emulsion polymerization. The monomers chosen were butyl acrylate, 2‐ethylhexyl acrylate (EHA), methyl methacrylate (MMA), and acrylic acid (AA). Within each polymer series, the proportion of AA monomer was held constant for each polymer preparation but acrylic ester monomer levels were varied. Adhesion performance was assessed by measurement of loop tack, static shear resistance, and through the construction of peel master‐curves. Peel master‐curves were generated through peel tests conducted over a range of temperatures and peel rates and through application of the time–temperature superposition principle. Bulk effects dominated by polymer zero shear viscosity change as AA and EHA levels were varied were attributed to the observed effect on static shear resistance and the horizontal displacements of peel master‐curves. Static shear resistance was found to strongly correlate with log(aC), a parameter introduced to horizontally shift peel master‐curves to form a superposed, “super master‐curve”. An interfacial interaction was proposed to account for deviations observed when loop tack was correlated with log(aC). Surface rearrangements via hydrogen bonding with the test substrate were suggested as responsible for the interfacial interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1237–1252, 2006  相似文献   

7.
In this paper, the latex interpenetrating polymer network poly(n-butyl acrylate) polystyrene/poly(methyl methacrylate) (PBA/PS/PMMA, or PBSM) was synthesized by microagglomeration and three-stage emulsion polymerization. The initial poly(n-butyl acrylate) latex particle was agglomerated by methacrylic acid residue containing the polymer latex and then encapsulated by PS and PMMA. The polyblend of poly(vinyl chloride) (PVC) and PBSM (PVC/PBSM) was prepared by blending PVC and PBSM. The morphology and properties of the polyblend have been studied. Experimental results have shown that the processability and impact-resistance of PVC can be enhanced considerably by means of blending 6–20 per hundred resin (phr) PBSM. The three-layered latex interpenetrating polymer network is a promising modifier for rigid PVC (RPVC) manufactures.  相似文献   

8.
The differences in the kinetics of emulsion polymerization between nonswelling and swellable latex particles were explored in an attempt to define the locus of polymerization. The systems studied included vinylidene chloride, which forms a nonswelling particle, and mixtures of vinylidene chloride and butyl acrylate, which copolymerize to form a swellable particle. The basic experiment involved growing a seed latex by adding monomer at a constant rate. At low feed rates the rate of polymerization Rp was controlled by the rate of monomer addition Ra. The data fit the equation Rp?KRa where the proportionality constant had an average value of 0.91. K was not dependent on monomer composition and appears to be a constant characteristic of the monomer addition process. In the range where this relationship holds, the reaction runs starved, i.e., monomer is consumed almost as fast as it enters the reactor. At higher rates of addition the reaction floods and excess monomer in the form of droplets can be detected. In this condition the rate starts out at a lower value but increases with conversion.' Rp is not controlled by Ra but does depend on monomer composition. No major differences were found between the behavior of swelling and nonswelling systems. Neither followed che kinetics expected if the Smith-Ewart theory were applicable. The results argue strongly that polymerization takes place at the particle-water interface or in a surface layer on the polymer particle.  相似文献   

9.
ZHANG  Xiaohuan  WANG  Beidi  YANG  Dong  ZHANG  Xiaohong  YUAN  Li  TANG  Qianqian  HU  Jianhua 《中国化学》2009,27(11):2273-2278
A new amphiphilic graft copolymer containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(vinyl acetate) side chains was synthesized via sequential atom transfer radical polymerization (ATRP) followed by selective hydrolysis of poly(methoxymethyl acrylate) backbone. Grafting‐from strategy was employed to synthesize PMOMA‐g‐PVAc graft copolymer (Mw/Mn=1.64) via ATRP. The final PAA‐g‐PVAc amphiphilic graft copolymer was obtained by selective acidic hydrolysis of PMOMA backbone in acidic environment without affecting the side chains. The critical micelle concentrations (cmc) in aqueous media were determined by a fluorescence probe technique. The micelle morphologies were found to be spheres.  相似文献   

10.
Well‐defined amphiphilic graft copolymer with hydrophobic polysulfone (PSU) backbone and hydrophilic poly(acrylic acid) (PAA) side chains were synthesized and characterized. For this purpose, commercially available PSU was converted to azido‐functionalized polymer (PSU‐N3) by successive chloromethylation and azidation processes. Independently, poly(tert‐butyl acrylate) (PtBA) with an alkyne‐end‐group is obtained by using suitable initiator in atom transfer radical polymerization (ATRP). Then, this polymer was successfully grafted onto PSU‐N3 by click chemistry to yield polysulfone‐graft‐poly(tert‐butyl acrylate), (PSU‐g‐PtBA). Finally, amphiphilic polysulfone‐graft‐poly(acrylic acid), (PSU‐g‐PAA), membranes were obtained by hydrolyzing precursor the PSU‐g‐PtBA membranes in trifluoroacetic acid. The final polymer and intermediates at various stages were characterized by 1H NMR, FTIR, GPC, and SEM analyses. Protein adsorption and eukaryotic and prokaryotic cell adhesion on PSU‐g‐PAA were studied and compared to those of PSU‐g‐PtBA and unmodified PSU. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Graft copolymers of poly(vinyl chloride) with styrene and (meth)acrylates were prepared by atom transfer radical polymerization. Poly(vinyl chloride) containing small amount of pendent chloroacetate units was used as a macroinitiator. The formation of the graft copolymer was confirmed with size exclusion chromatography (SEC), 1H NMR and IR spectroscopy. The graft copolymers with increasing incorporation of butyl acrylate result in an increase of molecular weight. One glass transition temperature (Tg) was observed for all copolymers. Tg of the copolymer with butyl acrylate decreases with increasing content of butyl acrylate.  相似文献   

12.
The seeded semicontinuous emulsion multi-copolymerization of butyl acrylate (BA),2-ethylhexyl acrylate (2EHA), methyl methacrylate (MMA), 2-hydroxyl propyl acrylate(HOPA) and acrylic acid (AA) was used to prepare the acrylic latexes with high-solidcontent. The effects of monomer emulsion feed rates (R_a) and (R/E)_E values, the ratio ofemulsifier amount between the initial charge (R) and the addition monomer emulsion (E),on the polymerization reaction features, the viscosities, surface tensions,particle sizes andparticle sizes distributions of latexes,T_g and the insoluble fractions of films, the 180° peelstrength, tack and holding power of pressure-sensitive adhesive (PSA) tapes, preparedfrom the latexes, were studied. Experimental study shows that the grafting and cross-linking fraction in the PSA tapes must be controlled within a suitable range to keep thebalance of the 180° peel strength, tack and holding power.  相似文献   

13.
Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macro-monomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxidewith diphenyl methyl potassium as the initiator and acryloyl chloride as the reaction termi-nating agent. The polymer was characterized by FTIR and SEC. The emulsifier-free emul-sion polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) containingvarious concentrations of PEO-A was studied. In all cases stable emulsion coplymerizationsof MMA and BA were obtained. The stabilizing effect was found to be dependent on themolecular weight and the feed amount of the macromonomer.  相似文献   

14.
A series of narrow-MMD polymers with the molecular mass from 33 × 103 to 123 × 103 (polydispersity coefficient 1.08–1.16) were synthesized by bulk polymerization of n-butyl acrylate [2,2′-azobis(isobutyronitrile), 60°C] in the presence of a low-molecular-mass RAFT agent, dibenzyl trithiocarbonate. Then, polymerization of acrylic acid was performed in aqueous-alcoholic solution (ammonium persulfate, 70°C) in the presence of the obtained polymers, and a series of n-butyl acrylate–acrylic acid block copolymers with the molecular masses from 22 × 103 to 81 × 103 (polydispersity coefficient 1.07–1.13) were prepared. In aqueous-alcoholic solutions of the synthesized copolymers, there are nanoparticles whose size varies from 5 tо 65 nm and increases with an increase in the molecular mass of the copolymer and in the concentration of water in the solvent.  相似文献   

15.
The graft polymerizations of acrolein (AL) onto an imidazole (Im)-containing polymer, such as a homopolymer of 4(5)-vinylimidazole (VIm) and several copolymers of VIm-methyl vinyl ketone, VIm-butyl acrylate, and VIm-2-ethyl hexyl acrylate, have been kinetically carried out in ethanol-water mixture at 0°C. The graft polymerization rate Rp and the degree of graft polymerization increased with increasing concentration of water in the solvent. Moreover, the Rp of the copolymer system having the hydrophobic group as the side chain decreased in comparison with the homopolymer system. Polymerizations of AL in the presence of propionamide or poly-acrylamide (AAm) induced by Im were also kinetically carried out in ethanol-water mixture. The Rp was also affected by the conformational change of poly-AAm. These results were discussed by assuming the conformation of the parent polymer in ethanol-water mixture.  相似文献   

16.
We have prepared the amidinium-carboxylate salt bridge-based supramolecular polymer gels from random copolymer of n-butyl acrylate and acrylic acid and a linear polyamidine having N,N′-di-substituted acetamidine group in the main chain. The supramolecular polymer gel with equimolar amounts of carboxy and amidine groups shows a high G′ value of 1.6 MPa at 25°C. In contrast, the gel prepared from the carboxy polymer and linear polyethyleneimine instead of the polyamidine shows liquid-like fluidity with a G′ value of 0.01 MPa at 25°C. The robustness of the amidine-based supramolecular polymer gels is attributed to the high stability of the amidinium-carboxylate salt bridge. Replacing the random copolymer with carboxy-terminated telechelic poly(n-butyl acrylate) results in a significant decrease in G′ as well as |η*|, which may arise from the difference in the network structure due to the arrangement of carboxy groups.  相似文献   

17.
Graphene–polymer composites of positive‐charged poly(dimethyl aminoethyl acrylate), negative‐charged poly(acrylic acid), and neutral polystyrene were prepared by “graft from” methodology using reversible addition fragmentation chain transfer (RAFT) polymerization via a pyrene functional RAFT agent (PFRA) modified graphene precursor. Fluorescence spectroscopy and attenuated total reflection infrared (ATR‐IR) evidenced that the PFRA was attached on the graphene basal planes by π–π stacking interactions, which is strong enough to anti‐dissociation in the polymerization mixture up to 80°C. Atomic force microscopy (AFM) revealed that the thickness of a graphene–polymer sheet was about 4.0 nm. Graphene composites of different polymers with the same polymerization degree exhibited similar conductivity; however, when the polymer chain was designed as random copolymer the conductivity was significantly decreased. It was also observed that the longer the grafted polymer chains the lower the conductivity. ATRIR spectroscopy and thermogravimetric analysis were also performed to characterize the as‐prepared composites. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Abstract

Various kinds of the complexes of 2-phenyl-2-oxazoline with various Bronsted acids were prepared. From the elementary analysis and spectroscopic analysis of the complex, it was identified to be an equimolar oxazolinium salt. The monomer could be polymerized with the oxazolinium salt to give N-benzoyl-polyethylenimine. The polymer yield in bulk polymerization was linearly proportional to the reaction time, and the number-average degree of polymerization of the polymer obtained at the complete conversion was proportional to the initial molar ratio of the monomer to the complex. The catalytic activities of the oxazolinium salts increased with a decrease in the pKavalue of Bronsted acid in water. The results of the infrared spectroscopy and nuclear magnetic resonance spectroscopy of the oxazolinium salt at room temperature and elevated temperature indicated that the change of the double bond character of the imino and ether linkages is brought about by the complexation. On the basis of these results, the mechanism of the polymerization was proposed.  相似文献   

19.
A novel biopolymer-based superabsorbent hydrogel was synthesized through chemically crosslinking graft copolymerization of acrylic acid (AA) onto kappa-carrageenan (κC), in the presence of a crosslinking agent and a free radical initiator. A proposed mechanism for κC-g-polyacrylic acid was suggested and the affecting variables onto graft polymerization (i.e. the crosslinker, the monomer and the initiator concentration, the neutralization percent and reaction temperature) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. Maximum water absorbency of the optimized final product was found to be 789 g/g. The swelling capacity of the synthesized hydrogels was also measured in various salt solutions. The time-temperature profile of the polymerization reaction, in order to investigate the effect of molecular oxygen was conducted in terms of the absence and presence of the atmospheric oxygen. The overall activation energy (Ea) of the graft polymerization reaction was found to be 2.93 KJ/mol.  相似文献   

20.
Well‐defined amphiphilic graft copolymers containing hydrophilic poly((meth)acrylic acid) (PMAA) or poly(acrylic acid) (PAA) side chains with gradient and statistical distributions were synthesized. For this purpose, the hydroxy‐functionalized copolymers with various gradient degrees, in which 2‐(6‐hydroxyhexanoyloxy)ethyl (meth)acrylate units (caprolactone 2‐[methacryloyloxy]ethyl ester, CLMA) formed strong gradient with tert‐butyl acrylate (tBA), slight gradient copolymers with tert‐butyl (meth)acrylate (tBMA), and statistical copolymers with methyl (meth)acrylate (MMA) were modified to bromoester multifunctional macroinitiators, P(tBMA‐grad‐BrCLMA), P(BrCLMA‐grad‐tBA), and P(BrCLMA‐co‐MMA). In the next step, they were applied in controlled radical polymerization of tBMA and tBA yielding graft copolymers with various lengths of side chains as well as graft densities. Further, the tert‐butyl groups in copolymers were successfully removed via acidolysis in the presence of trifluoracetic acid, which caused transformation of the hydrophobic graft copolymers into amphiphilic ones with ability of self‐assembly for the future biomedical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号