首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radical copolymerization of styrene (M1) with methyl methacrylate has been carried out in several solvents. The monomer reactivity ratio (r) was affected by the solvent. The values of log 1/r, Q2, and e2 were found to increase with the decreases of the V C[dbnd]O and v n[dbnd]c stretcning frequencies determined in the corresponding solvents.  相似文献   

2.
Radical copolymerization of styrene (St, M1) with acrylonitrile (AN, M2) has been carried out using azobisisobutylonitrile as an initiator in benzene, dimethylsulfoxide, acetonitrile, and ethanol at 60 and 80°C. Good linear correlationships were obtained by plotting the values of log r1, log r2, Q2, and e2 against those of vC[dbnd]N and vC[dbnd]C determined in the solvents: the increase in the interaction between AN and the solvent was found to decrease the values of log r1 and e2 but to increase those of log r2 and Q2. The results are discussed in terms of the solvation both in the ground state and in the transition state.  相似文献   

3.
Abstract

The reaction of Ar[sbnd]P[dbnd]C[dbnd]P[sbnd]Ar (Ar=2.4.6-tBu3C6H2) with electrophiles (H+, S8) proceeds at the phosphorus atom with subsequent cyclisation of an o-tbutyl group.  相似文献   

4.
Abstract

The X-ray analyses of sterically protected Z-2-t-butyldimethylsilyloxy-2-phenylphosphaethylene (Z-2) and 3,3-diphenyl-1-phosphaallene (3) were carried out and the structures of the parent compounds, HP[dbnd]CH2 and HP[dbnd]C[dbnd]CH2, were optimized by ab initio methods.  相似文献   

5.
Radical poly(vinyl chlorides), (PVC), obtained in bulk and in suspension polymerizations, and their low molecular weight extracts have been thoroughly studied by high-field NMR to obtain better qualitative and quantitative analyses of their structural defects. Assignments have been achieved by 1H-1H decoupling experiments and hyperfine spectral structure analysis of model compounds and low molecular weight extracts. Strong effects of the nature of the solvents used in 1H-NMR analysis were observed. Most of the defects of these radical PVC's have been quantitatively estimated in terms of average number values in correlation with their [Mbar]n. End-groups of type [I'] (= ?CH2?CH[dbnd]CH[sbnd]CH2C1) are about 0.5 per chain; internal double bonds can only be estimated by difference, and their amount increases with increasing conversion. A very low quantity of vinyl chain end [I'] ([dbnd] [sbnd]CHC1[sbnd]CH[dbnd]CH2) has been found only in low molecular weight extracts. For the three probable saturated chloromethyl ends [II] ([dbnd][sbnd]CHCl[sbnd]CH2Cl), [III] ([dbnd] [sbnd]CH2[sbnd]CH2Cl), and [IV] ([dbnd] >CH[sbnd]CH2C1), only [II] and [III] were definitely identified. Finally, in taking into account all the endgroups, it has been concluded that branches would be grafted throughout the process. On the average, 4 to 5 branches have been found per chain of high molecular weight PVC.  相似文献   

6.
Abstract

The reactions of a variety of electrophiles with the N-silyl-P-trifluoroethoxyphosphoranimine anion Me3Sin°P(Me)(OCH2CF3)CH? 2 (1a), prepared by the deprotonation of the dimethyl precursor Me3SiN[dbnd]P(OCH2CF3)Me2 (1) with n-BuLi in Et2O at-78°C, were studied. Thus, treatment of 1a with alkyl halides, ethyl chloroformate, or bromine afforded the new N-silylphosphoranimine derivatives Me3SiN[dbnd]P(Me)(OCH2CF3)CH2R [2: R = Me, 3: R = CH2Ph, 4: R = CH[sbnd]CH2, 5: R = C(O)OEt, and 6: R = Br]. In another series, when 1a was allowed to react with various carbonyl compounds, 1,2-addition of the anion to the carbonyl group was observed. Quenching with Me3SiCl gave the O-silylated products Me3SiN[dbnd]P(Me)(OCH2CF3)CH2°C(OSiMe3)R1R2 [7: R 1 = R 2 = Me; 8: R 1 = Me, R 2 = Ph; 9: R1 = Me, R 2 = CH[sbnd]CH2; and 10: R 1 = H, R 2 = Ph]. Compounds 2–10 were obtained as distillable, thermally stable liquids and were characterized by NMR spectroscopy (1H, 13C, and 31P) and elemental analysis.  相似文献   

7.
Abstract

The reactions of either PhPCl2 or PCl3 with (Me3Si)2NLi followed by H2C[dbnd]CHMgBr were used to prepare the new P-vinyl substituted [bis(trimethylsilyl)amino]phosphines, (Me3Si)2NP(R)CH[dbnd]CH2 [1: R=Ph, 2: CH[dbnd]CH2, 3: R=Me, and 4: R=N(SiMe3)2]. Oxidative bromination of phosphines 3–1 afforded the P-bromo-P-vinyl-N-(trimethylsilyl)phosphoranimines, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)Br [5: R=Ph, 6: R=CH[dbnd]CH2, 7: R=Me], which, upon treatment with CF3CH2OH/Et3N, were subsequently converted to the P-trifluoroethoxy derivatives, Me3SiN[dbnd]P(CH[dbnd]CH2)(R)OCH2CF3 [8: R=Ph, 9: R=CH[dbnd]CH2, 10: R=Me]. Compounds 1–10, which are of interest as potential precursors to P-vinyl substituted poly(phosphazenes), were fully characterized by elemental analyses (except for the thermally unstable P-Br derivatives 5–7) and NMR spectroscopy (1H, 13C, and 31P) including complete analysis of the vinylic proton splitting patterns via HOM2DJ experiments.  相似文献   

8.
Summary The stoichiometries, kinetics and mechanisms of oxidation of (NH2)2CS (1) and (Me2N)2CS (2) to the corresponding disulphides by CoIIIM (M = W12O40 ∞-) in aqueous HC1O4 were investigated. The reaction with (1) follows the empirical rate law- d[oxidant] = k[reductant][oxidant] where k = 12.5 ± 0.3 m−1 s−1 at 25° C, while that with (2) follows the equation- d[oxidant] = a + b [reductant] [reductant] [oxidant] where a = 5.4 × 104 M−1s−1 and b = 3.3 × 106M−2 s−1 at 25° C. Free radicals are important in the reactions and possible reaction mechanisms are suggested and discussed.  相似文献   

9.
Abstract

Three pathways were observed in the reactions of Schiff bases of Thiohydrazides with P(NR2)3. (a) MeS-R2N exchange: MeS-C([dbnd]S)-NHN[dbnd]CHPh (1) reacted with P(NR2)3 led to new Schiff bases, R2N-C([dbnd]S)-NHN[dbnd]CH = Ph (2). (b) Cleavage of C[dbnd]S bond and the formation of P[dbnd]S bond: H2N-C([dbnd]S)-NHN[dbnd]CH = Ph (3) reacted with P(NR2)3 gave rise to the thiophosphoric amide. (Et2N)2P([dbnd]S)-NH-CH = N-N[dbnd]CH-Ph (4). (c) Formation of thiadiazole and triazole: Schiff bases 2a and H2N(MeS)C = N-N[dbnd]CH-Ph (6) reacted with P(NR2)3 respectively and produced 5-dimethylamino-2-phenyl-2,3-(2H)-1,3,4-thiadiazole (5) and 5-methylthio-2-phenyl-2,3-(2H)-1,3,4-triazole (7).  相似文献   

10.
Abstract

Treatment of ethyl oxalyl chloride or methyl oxalyl chloride with lithium diisopropyl(carboethoxyfluoromethyl)phosphonate[(i-PrO)2P(O)CFCO2Et]?Li+ 2 followed by in siru nucle-ophilic addition with methylmagnesium iodide or vinyl magnesium bromide affords with exclusive E-stereoselectivity formation of diethyl-2-fluoro-3-methyl fumarate (CH3)(C02Et)C[dbnd]CFCO2Et 4 or 75% of the E-isomer of a-fluoro-P-vinyl-a,P-unsaturated diester (E,Z)-(CH2[dbnd]CH)(CO2C2H5)C[dbnd]CFCO2Et 5, respectively. However, direct reaction of ethyl pyruvate with 2 gives the fluoro-olefin (CH3)(CO2Et)C[dbnd]CFCO2Et 4 with 79% E-stere-oselectivity. The E/Zratio of (CH2[dbnd]CH)(CO2Et)C[dbnd]CFCO2Et 5 depends on the HMFT or DMPU cosolvents present in the reaction mixture.  相似文献   

11.
The potential insertion-electrode compounds Na1.2[V3O8] (NaV) and Na0.7Li0.7[V3O8] (NaLiV) were synthesized from mixtures of Na2CO3, Li2CO3 and V2O5, which were melted at 750° and subsequently cooled to room temperature. The structures of NaV and LiV contain sheets of polymerized (VOn) polyhedra, which are topologically identical to the sheet of polymerized polyhedra in Li1.2[V3O8] (LiV). Vanadium occurs in three different coordination environments: [2+3] V(1), [2+2+2] V(2) and [1+4+1] V(3). Calculated bond-valence sums indicate that V4+ occurs preferentially at the V(3) site, which agrees with the general observation that [6]-coordinated V4+ prefers [1+4+1]-rather than [2+2+2]-coordination. The M-cations Na and Li occur at three distinct sites, M(1), M(2) and M(3) between the vanadate sheets. The M(1)-site is fully occupied and has octahedral coordination. The M(2) sites are partly occupied in NaV and NaLiV, in which they occur in [4]- and [6]-coordination, respectively. Li partly occupies the M(3) site in NaLiV, in which it occurs in [3]-coordination. The M(2) and M(3) sites in NaLiV occur closer to the vanadate sheets than the M(2) sites in NaV and LiV. The shift in these cation positions is a result of the larger distance between the vanadate sheets in NaLiV than in LiV, which forces interstitial Li to move toward one of the vanadate sheets to satisfy its coordination requirements. Bond-valence maps for the interstitial cations Na and Li are presented for NaV, NaLiV and LiV. These maps are used to determine other potential cation positions in the interlayer and to map the regions of the structure where the Na and Li have their bond-valence requirements satisfied. These regions are potential pathways for Na and Li diffusion in these structures, and are used to explain chemical diffusion properties of Na and Li in the Na-Li-[V3O8] compounds.  相似文献   

12.
Five novel coordination polymers, [(Cu(L1)2OH) · Cl · 3H2O] ( 1 ) [L1 = bis(N‐imidazolyl)methane], [Cd(L1)2(NCS)2] ( 2 ), [Zn(L1)2(NCS)2] ( 3 ), [Cu(L1)2(NO3)2] ( 4 ), and [Cu(L2)1.5(NCS)2] ( 5 ) [L2 = 1,4‐bis(N‐imidazolyl)butane] were obtained from self‐assembly of the corresponding metal salts with flexible ligands and their structures were fully characterized by X‐ray diffraction (XRD) analysis, Fourier Transform Infrared (FT‐IR) spectroscopy, elemental analysis and thermogravimetric (TGA) measurements. X‐ray diffraction analyses revealed that complexes 1 , 2 , 3 , and 4 exhibit 1D double‐stranded chain structures, which result from doubly bridged [CuOH], [M(NCS)2] (M = Cd, Zn), and [Cu(NO3)2] units, respectively. The polymeric copper complex 5 displays 1D ladder structure., These complexes, with the exception of complex 1 , are stable up to 300 °C.  相似文献   

13.
Mono benzoxazine appended N-capped amino bis(disubstitutedphenol) ligands [ II ( a–c )] upon reaction with VVO(OEt)3 in a 1 : 1 molar ratio in EtOH/MeOH give [{VVO}en(3,5-dtbb)3] ( 1 ), [{VVO}en(3-tb,5-mb)3] ( 2 ) and [{VVO}en(3,5-dmb)3] ( 3 ). During the reaction, the benzoxazine ring opens with the loss of methylene group and the newly formed ligands, N,N-bis(2-hydroxy-3,5-disubstitutedbenzyl)-N’-2-hydroxy-3,5-disubstituted benzyledene-1,2-diaminoethane [ III ( a–c )], behave as tribasic pentadentate in these complexes. Under similar conditions, when [MVIO2(acac)2] (M=Mo or W; Hacac=acetylacetone) reacts with II ( a–c ), these ligands retain their identity and form cis-[MVIO2] complexes, [{MoVIO2}{en(3,5-dtbb)2(6,8-dtbbenzox)}] ( 4 ), [{MoVIO2}{en(3-tb,5-mb)2(6-tb,8-mbbenzox)}] ( 5 ) and [{MoVIO2}{en(3,5-dmb)2(6,8-dmbenzox)}] ( 6 ), [{WVIO2}{en(3,5-dtbb)2(6,8-dtbbenzox)}] ( 7 ), and [{WVIO2}{en(3-tb,5-mb)2(6-tb,8-mbbenzox)}] ( 8 ). However, the benzoxazine ring ruptures in case of ligand IIc under these conditions and form [{WVIO2}{en(3,5-dmb)3}] ( 10 ), similar to complexes 1–3 . Complex [{WVIO2}{en(3,5-dmb)2(6,8-dmbenzox)}] ( 9 ), having structure similar to 4–8 , could only be obtained when the reaction was carried out in toluene. Not only 9 , even complexes 4–8 can be isolated in toluene. Rupturing of both benzoxazine rings has also been experienced when ligands 1,2-bis(6,8-disubstitutedbenzo[e][1,3]oxazin-3(4H)-yl)ethane [ I ( a–c )] react with [MVIO2(acac)2] (M=Mo or W) in MeOH and give salan type complexes [(MVIO2)en(3,5-dtbb)2] [M=Mo ( 11 ), M=W ( 14 )], [(MVIO2)en(3-tb,5-mb)4] [M=Mo ( 12 ), M=W ( 15 )] and [(MVIO2)en(3,5-dmb)4] [M=Mo ( 13 ), M=W ( 16 )]. Complexes 1–9 have been used as catalyst for the multicomponent Biginelli reaction for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) and oxidative bromination of phenol derivatives.  相似文献   

14.
Multiarm star‐branched polymers based on poly(styrene‐b‐isobutylene) (PS‐PIB) block copolymer arms were synthesized under controlled/living cationic polymerization conditions using the 2‐chloro‐2‐propylbenzene (CCl)/TiCl4/pyridine (Py) initiating system and divinylbenzene (DVB) as gel‐core‐forming comonomer. To optimize the timing of isobutylene (IB) addition to living PS⊕, the kinetics of styrene (St) polymerization at −80°C were measured in both 60 : 40 (v : v) methyl cyclohexane (MCHx) : MeCl and 60 : 40 hexane : MeCl cosolvents. For either cosolvent system, it was found that the polymerizations followed first‐order kinetics with respect to the monomer and the number of actively growing chains remained invariant. The rate of polymerization was slower in MCHx : MeCl (kapp = 2.5 × 10−3 s−1) compared with hexane : MeCl (kapp = 5.6 × 10−3 s−1) ([CCl]o = [TiCl4]/15 = 3.64 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M). Intermolecular alkylation reactions were observed at [St]o = 0.93M but could be suppressed by avoiding very high St conversion and by setting [St]o ≤ 0.35M. For St polymerization, kapp = 1.1 × 10−3 s−1 ([CCl]o = [TiCl4]/15 = 1.82 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M); this was significantly higher than that observed for IB polymerization (kapp = 3.0 × 10−4 s−1; [CCl]o = [Py] = [TiCl4]/15 = 1.86 × 10−3M; [IB]o = 1.0M). Blocking efficiencies were higher in hexane : MeCl compared with MCHx : MeCl cosolvent system. Star formation was faster with PS‐PIB arms compared with PIB homopolymer arms under similar conditions. Using [DVB] = 5.6 × 10−2M = 10 times chain end concentration, 92% of PS‐PIB arms (Mn,PS = 2600 and Mn,PIB = 13,400 g/mol) were linked within 1 h at −80°C with negligible star–star coupling. It was difficult to achieve complete linking of all the arms prior to the onset of star–star coupling. Apparently, the presence of the St block allows the PS‐PIB block copolymer arms to be incorporated into growing star polymers by an additional mechanism, namely, electrophilic aromatic substitution (EAS), which leads to increased rates of star formation and greater tendency toward star–star coupling. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1629–1641, 1999  相似文献   

15.
The molecular dimensions of polydipropylsiloxamer were studied by intrinsic viscosity measurements in toluene and in 2-pentanone. The relationships between the molecualr weight and the intrinsic viscosity were found to be: [η]25°C., toluene = 4.35 × 10?4 M0.58; [η]θ(10°C.), toluene = 1.09 × 10?3 M0.5; [η]θ(76°C.), 2-pentanone = 8.71 × 10?4 M0.5. This held reasonably well for molecular weights from 25,000 to 3000,000. The root-mean-square end-to-end length ratio, (r02 /M)1/2 as calculated from the constant K, exceeds the free rotation value by approximately 100%. The disparity is greater than that found with polydimethylsiloxamer, indicating a lower degree of flexibility for the polydipropylsiloxamer. This is largely due to the short range steric interaction between near neighboring units of the chain. Gel permeation chromatography was also employed to demonstrate the lower degree of flexibility for polydipropylsiloxamer as compared with polydimethylsiloxamer.  相似文献   

16.
Uranyl vanadate compounds with divalent cations, M(UO2)(V2O7) (M = Ca, Sr) and Sr3(UO2)(V2O7)2, were synthesized by flux crystal growth, and their crystal structures were solved using single‐crystal X‐ray diffraction data. Ca(UO2)V2O7 and Sr(UO2)V2O7 were synthesized from reactants with molar ratios M:U:V of 1:1:2 and identical heating conditions, and increasing the M:U:V ratio to 3:1:4 resulted in Sr3(UO2)(V2O7)2. Crystallographic data for M(UO2)V2O7 compounds are: a = 7.1774(18) Å, b = 6.7753(17) Å, c = 8.308(2) Å; V = 404.01(18) Å3; space group Pmn21, Z = 2 for Ca; a = 13.4816(11) Å, b = 7.3218(6) Å, c = 8.4886(7) Å; V = 837.91(12) Å3; space group Pnma, Z = 4 for Sr. Compound Sr3(UO2)(V2O7)2 has a = 6.891(3) Å, b = 7.171(3) Å, c = 14.696(6) Å, α = 85.201(4)?, β = 78.003(4)?, γ = 89.188(4)?; V = 707.9(5) Å3; space group P1 , Z = 2. The framework structure of Sr(UO2)(V2O7) is related to that of Pb(UO2)(V2O7) reported previously, while that of Ca(UO2)(V2O7) has a different topology. The topological polymorphism of the [(UO2)(V2O7)]‐type framework may be due to the differing ionic radii of the guest M2+ cations. Compound Sr3(UO2)(V2O7)2 has a modular structure based on two different types of electroneutral layers: [Sr(UO2)(V2O7)] and [Sr2(V2O7)]. Structural complexities were calculated, and Raman spectra were collected and their peaks were assigned.  相似文献   

17.
In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu4N+)2[MIVO(Pc4?)]2? (M=Ti, V) and (Bu3MeP+)2[MIVO(Pc4?)]2? (M=Ti, V) with [MIVO(Pc4?)]2? dianions were synthesized and characterized. Reduction of MIVO(Pc2?) carried out with an excess of sodium fluorenone ketyl in the presence of Bu4N+ or Bu3MeP+ is exclusive to the phthalocyanine centers, forming Pc4? species. During reduction, the metal +4 charge did not change, implying that Pc is an non‐innocent ligand. The Pc negative charge increase caused the C?N(pyr) bonds to elongate and the C?N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn–Teller effects are significant in the [eg(π*)]2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q‐bands were observed in the UV/Vis/NIR when MIVO(Pc2?) was reduced to [MIVO(Pc . 3?)] . ? and [MIVO(Pc4?)]2?. From magnetic measurements, [TiIVO(Pc4?)]2? was found to be diamagnetic and (Bu4N+)2[VIVO(Pc4?)]2? and (Bu3MeP+)2[VIVO(Pc4?)]2? were found to have magnetic moments of 1.72–1.78 μB corresponding to an S=1/2 spin state owing to VIV electron spin. As a result, two latter salts show EPR signals with VIV hyperfine coupling.  相似文献   

18.
Cd2Cu(PO4)2     
During an investigation of the insufficiently known system M1O–M2O–X2O5–H2O (M1 = Cd2+, Sr2+ and Ba2+; M2 = Cu2+, Ni2+, Co2+, Zn2+ and Mg2+; X = P5+, As5+ and V5+), single crystals of the novel compound dicadmium copper(II) bis[phosphate(V)], Cd2Cu(PO4)2, were obtained. This compound belongs to a small group of compounds adopting a Cu3(PO4)2‐type structure and having the general formula M12M2(XO4)2 (M1/M2 = Cd2+, Cu2+, Mg2+ and Zn2+; X = As5+, P5+ and V5+). The crystal structure is characterized by the interconnection of infinite [Cu(PO4)2]n chains and [Cd2O10]n double chains, both extending along the a axis. Exceptional characteristics of this structure are its novel chemical composition and the occurrence of double chains of CdO6 polyhedra that were not found in related structures. In contrast to the isomorphous compounds, where the M1 cations are coordinated by five O atoms, the Cd atom is coordinated by six. The dissimilarity in the geometry of M1 coordination between Cd2Cu(PO4)2 and the isomorphous compounds is mostly due to the larger ionic radius of the Cd cation in comparison with the Cu, Mg and Zn cations. Sharing a common edge, two CdO6 polyhedra form Cd2O10 dimers. Each such dimer is bonded to another dimer sharing common vertices, forming [Cd2O10]n double chains in the [100] direction. The Cu atoms, located on an inversion centre (site symmetry ), form isolated CuO4 squares interconnected by PO4 tetrahedra, forming [Cu(PO4)2]n chains similar to those found in related structures. Conversely, the [Cd2O10]n double chains, which were not found in related structures, are an exclusive feature of this structure.  相似文献   

19.
Synthesis and Molecular Structure of [Al(SiMe3)3(DBU)] (DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene) [Al(SiMe3)3(OEt2)] reacts with DBU (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene) at 0 °C yielding [Al(SiMe3)3 · (DBU)] ( 1 ). 1 was characterised spectroscopically (1H, 13C, 29Si, 27Al NMR, IR, MS) and by X-ray structure determination [monoclinic, C2/c, a = 33.053(2), b = 9.307(1), c = 20.810(1) Å, β = 124.07(2)°, V = 5302.4(5) Å3, Z = 8, 218(2) K]. 1 does not react with [Cp2ZrCl2] even in boiling toluene.  相似文献   

20.
Abstract

The interaction of the sodium salts of thiosemicarbazones with diphenylantimony chloride in 1:1 molar ratio in benzene solution lead to the formation of derivatives, Ph2Sb[SC(NH2)NN: C(R)R′] where R = H; R′ [dbnd] C6H5, CH3OC6H4, C6H5CH[dbnd]CH, and R′ [dbnd] CH3; R′[dbnd]C6H5, CH3OC6H4, C6H4CH3, respectively. The resulting complexes have been characterised on the basis of elemental analyses and molecular weight determination. The mode of bonding of the ligands with the metal atom has been proposed on the basis of I.R., 1H and 13C NMR studies. All these ligands are found to behave as monofunctional bidentate moiety in these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号