首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trimethylamine methacrylimide (TAMI) has been homo- and copolymerized with methyl methacrylate, vinyl acetate, vinyl chloride, hydroxypropyl methacrylate, and acrylonitrile by free-radical initiators to soluble, low molecular weight polymers containing pendant aminimide groups along the backbone of the polymer chains. The reactivity ratios in the copolymerization of TAMI (M1) with acrylonitrile (M2) were determined: r1 = 0.10 ± 0.01, r2 = 0.37 ± 0.04. The Alfrey-Price Q and e values for TAMI were also calculated: Q = 0.18, e = ?0.60. This preliminary work indicates that TAMI has potential for the preparation of reactive polymers.  相似文献   

2.
A kinetic study of radical polymerization of vinyl mercaptobenzothiazole (VMBT) with α,α′-azobisisobutyonitrile (AIBN) at 60°C was carried out. The rate of polymerization (Rp) was found to be expressed by the rate equation: Rp = k[AIBN]0.5 [VMBT]1.0, indicating that the polymerization of this monomer proceeds via an ordinary radical mechanism. The apparent activation energy for overall polymerization was calculated to be 20.9 kcal/mole. Moreover, this monomer was copolymerized with methyl methacrylate, acrylonitrile, vinyl acetate, phenyl vinyl sulfide, maleic anhydride, and fumaronitrile at 60°C. From the results obtained, the copolymerization parameters were determined and discussed.  相似文献   

3.
A new approach to obtaining thermoset organotin polymers, which permits control of crosslinking site distribution and, through it, a better control of properties of organotin antifouling polymers, is reported. Tri-n-butyltin acrylate and tri-n-butyltin methacrylate monomers were prepared and copolymerized, by the solution polymerization method with the use of free-radical initiators, with several vinyl monomers containing either an epoxy or a hydroxyl functional group. The reactivity ratios were determined for six pairs of monomers by using the analytical YBR method to solve the differential form of the copolymer equation. For copolymerization of tri-n-butyltin acrylate (M1) with glycidyl acrylate (M2), these reactivity ratios were n = 0.295 ± 0.053, r2 = 1.409 ± 0.103; with glycidyl methacrylate (M2) they were r1 = 0.344 ± 0.201, r2 = 4.290 ± 0.273; and with N-methylolacrylamide (M2) they were r1 = 0.977 ± 0.087, r2 = 1.258 ± 0.038. Similarly, for the copolymerization of tri-n-butyltin methacrylate (Mi) with glycidyl aery late (M2) these reactivity ratios were r1 = 1.356 ± 0.157, r2 = 0.367 ± 0.086; with glycidyl methacrylate (M2) they were r1 = 0.754 ± 0.128, r2 = 0.794 ± 0.135; and with N-methylolacrylamide (M2) they were r1 ?4.230 ± 0.658, r2 = 0.381 ± 0.074. Even though the magnitude of error in determination of reactivity ratios was small, it was not found possible to assign consistent Q,e values to either of the organotin monomers for all of its copolymerizations. Therefore, Q,e values were obtained by averaging all Q,e values found for the particular monomer, and these were Q = 0.852, e = 0.197 for the tri-n-butyltin methacrylate monomer; and Q = 0.235, e = 0.401 for the tri-n-butyltin acrylate monomer. Since the reactivity ratios indicate the distribution of the units of a particular monomer in the polymer chain, the measured values are discussed in relation to the selection of a suitable copolymer which, when cross-linked with appropriate crosslinking agents through functional groups, would give thermoset organotin coatings with an optimal balance of mechanical and antifouling properties.  相似文献   

4.
Acrolein was copolymerized by radical initiation in aqueous solutions with sodium p-styrenesulfonate and acrylic acid, respectively, in the pH range of 3–7. The reactivities were shown to be pH-dependent. For the acrolein (M1)–sodium p-styrenesulfonate (M2) pair, r1 = 0.33 ± 0.15 and r2 = 0.32 ± 0.05 at pH 3; r1 = 0.23 ± 0.12 and r2 = 0.05 ± 0.03 at pH 5; r1 = 0.26 ± 0.03 and r2 = 0.025 ± 0.025 at pH 7. For the acrolein (M1)–acrylic acid (M2) pair, r1 = 0.50 ± 0.30 and r2 = 1.15 ± 0.2 at pH 3; r1 = 2.40 ± 0.50 and r2 = 0.05 ± 0.05 at pH 5; r1 = 6.70 ± 3.00 and r2 = 0.00 at pH 7. For acrolein, the new values of Q = 1.6 and e = 1.2 have been calculated. For sodium p-styrenesulfonate, the values Q = 0.76 and e = ?0.26 at pH 3, Q = 0.51 and e = ?0.87 at pH 5, Q = 0.39 and e = ?1.00 at pH 7 were obtained; and for acrylic acid, the values Q = 1.27 and e = 0.50 at pH 3, Q = 0.11 and e = ?0.22 at pH 5 were derived. The changes in reactivity are explained on the basis of inductive and resonance effects.  相似文献   

5.
The copolymerizations of p-substituted phenyl vinyl sulfides (M2) having OCH3, CH3, H, Cl, and Br substituents with styrene and methyl methacrylate (M1) and their intercopolymerizations at 60°C. were studied. From the results of copolymerizations with styrene and methyl methacrylate, the monomer reactivity ratios and the Q2e2 values were determined. For example, the Q and e values for unsubstituted phenyl vinyl sulfide were 0.45 and ?1.26 in the copolymerization with methyl methacrylate. This result indicated the importance of the 3d orbital resonance between the sulfur atom and the adjacent carbon atom in the transition state of copolymerizations. The relative reactivities of these monomers toward the polymer radicals were found to be correlated with the Hammett σ constants of the substituents. In the intercopolymerizations of these monomers, it was also found that the relative reactivities followed the Hammett equation approximately.  相似文献   

6.
The copolymerization of vinylhydroquinone (VHQ) and vinyl monomers, e.g., methyl methacrylate (MMA), 4-vinyl-pyridine (4VP), acrylamide (AA), and vinyl acetate (VAc), by tri-n-butylborane (TBB) was investigated in cyclohexanone at 30°C under nitrogen. VHQ is assumed to copolymerize with MMA, 4VP, and AA by vinyl polymerization. The following monomer reactivity ratios were obtained (VHQ = M2): for MMA/VHQ/TBB, r1 = 0.62, r2 = 0.17; for 4VP/VHQ/TBB, r1 = 0.57, r2 = 0.05; for AA/VHQ/TBB, r1 = 0.35, r2 = 0.08. The Q and e values of VHQ were estimated on the basis of these reactivity ratios as Q = 1.4 and e = ?;1.1, which are similar to those of styrene. This suggests that VHQ behaves like styrene rather than as an inhibitor in the TBB-initiated copolymerization. No homopolymerization was observed either under nitrogen or in the presence of oxygen. The reaction mechanism is discussed.  相似文献   

7.
Radical copolymerization of methyl vinyl ketone (MVK, M1) with acrylamide (AAm) and its derivatives, such as methacrylamide (MAAm) and N,N′ -dimethylacrylamide (DMAAm), was carried out in dioxane or ethanol using α,α - azobisisobutylonitrile as the initiator at 60°C under vacuum. The monomer reactivity ratios found in dioxane were as follows: ri = 1.06, r2 = 6.41 for the MVK-AAm system; r1 = 0.29, r2 = 3.05 for the MVK-MAAm system; and r1 = 0.95, r2 = 0.26 for the MVK-DMAAm system. The n and r2 values obtained in ethanol were as follows: r1 = 0.88, r2 = 1.18 for the MVK-AAm system; and r1 = 0.37, r2 = 2.04 for the MVK-MAAm system. Q2 and e2 values of AAm derivatives in dioxane were estimated to be 3.03 and 1.04 for MAAm and 2.15 and 1.11 for DMAAm, respectively. The Q2 and e2 values of MAAm in ethanol were estimated to be 2.67 and 1.21, respectively. Based on these results, the alternating copolymerizability depends on the interaction of monomer-monomer, and the strong solvent effect depends on the radical copolymerization of the AAm derivatives.  相似文献   

8.
2-Mercaptobenzothiazolyl methacrylate (MBTM) was synthesized by the reaction of 2-mercaptobenzothiazole and methacrylyl chloride in tetrahydrofuran at -18°C. MBTM was found to polymerize in the presence of 2,2′-azobisisobutyronitrile (AIBN), n-BuLi, and UV light. From the kinetic studies of radical polymerization of MBTM with AIBN in benzene at 60°C, the overall activation energy was determined to be 18.9 kcal/mole, and the rate of polymerization (R) was expressed as Rp = k[AIBN]0.5 [MBTM], where k is the overall polymerization rate constant. From these results this polymerization was confirmed to proceed via an ordinary radical mechanism. This monomer (M2) was also copolymerized radically with styrene (M1) at 60°C, and the resulting copolymerization parameters were determined as r1 = 0.042, r2 = 0.20, Q2 = 4.09, and e2 = 1.39. The thermal stability and the photodegradation behavior of the polymers were examined, and they were compared with those of the related polymers.  相似文献   

9.
Ferrocenylmethyl methacrylate (FMMA) was copolymerized with styrene (St), methyl methacrylate (MMA), and ethyl acrylate (EA) in benzene solution at 25°C by γ radiation. The reactions proceeded by a free radical mechanism, and monomer reactivity ratios were derived by the Tidwell–Mortimer method for St(M1)–FMMA(M2), r1 = 0.35 and r2 = 0.46; for MMA(M1–FMMA)(M2), r1 = 0.85 and r2 = 1.36; for EA(M1)–FMMA(M2), r1 = 0.36 and r2 = 3.03. The Q and e values of FMMA determined from copolymerization with St were 0.97 and 0.55, respectively. Terpolymerization of a MMA–FMMA–EA system based on the Alfrey–Goldfinger equations was studied. This is a typical terpolymerization system in which reactivities of the monomers obey the Qe scheme. Comparing the results obtained here with those previously reported for other monomers, we concluded that FMMA is one of the most highly reactive monomers among alkyl methacrylates.  相似文献   

10.
A study of the photopolymerization of vinyl monomers in the presence of tetramethyltetrazene (TMT) was made. TMT was found to act as an effective sensitizer. In the photopolymerization of vinyl monomers such as methyl methacrylate or styrene the rate of polymerization was expressed by the equation: Rp = k[TMT]1/2[monomer]. The chain-transfer constant of TMT under ultraviolet irradiation was estimated to be 3.8 × 10?2 for the above monomers. A linear correlation was found to exist between the reactivity of dimethylamino radical toward the vinyl monomers and e values for the corresponding monomers.  相似文献   

11.
Trimethylamine-4-vinylbenzimide (TAVBI) has been homo- and copolymerized with styrene, methyl methacrylate, and hydroxypropyl methacrylate by free-radical initiators to soluble, low molecular weight polymers containing pendant aminimide groups along the backbone of the polymer molecules. The reactivity ratios in the copolymerization of TAVBI (M1) with styrene (M2) were determined: r1 = 0.63 ± 0.07, r2 = 0.47 ± 0.05. The Alfrey-Price Q and e values for TAVBI were also calculated: Q = 0.88, e = 0.31. This introductory work indicates that TAVBI has potential for the preparation of a wide variety of reactive polymers.  相似文献   

12.
The polymerization and copolymerization of 2-phthalimidomethyl-1,3-butadiene were investigated. This monomer was easily polymerized by benzoyl peroxide catalyst in bulk or in solvent, and by γ-radiation in the solid state to give polymers having a softening point of 135–145°C. Although these resulting polymers did not give x-ray diffraction patterns, they showed crystalline patterns by electron diffraction. On the other hand, cationic polymerization with the use of boron trifluoride diethyl etherate in chloroform was attempted, but no formation of the polymer was observed. Also, this monomer was easily copolymerized with styrene in N,N-dimethylformamide. The monomer reactivity ratios and Alfrey-Price Q and e values calculated from the copolymerization data of this monomer (M1) with styrene (M2) were r1 = 2.0 ± 0.13, r2 = 0.15 ± 0.02, and Q1 = 2.78, e1 = 0.30.  相似文献   

13.
Nine novel types of dialkyldithiol mesaconates (DRTM, M1) were synthesized and copolymerized with styrene (Ma) in tetrahydro-furan at 60 °C in order to clarify the polymerization behavior of DRTM and the substituent effects on the copolymerization. From the results obtained, the monomer reactivity ratio r1, r2 and Q1, e1 values were determined. It was found that the relative reactivities l/r2 of DRTM toward an attack by polystyryl radical were correlated only by the polar substituent constant σ? of the alkyl group in DRTM, but not by the steric substituent constant E, in Taft's equation: log (l/r2) = σ?σ? + ΔEs. It was also observed that the Q1 and e1 values for DRTM were correlated by Taft's σ? constant. The number-average molecular weights of the DRTM-ST copolymer were found to be between 5.0 × 103 and 1.2 × 104.  相似文献   

14.
Abstract

The monomer reactivity ratios for vinyl acetate (VAc)-allilidene diacetate (ADA) copolymerization have never been obtained. The composition of VAc-ADA copolymers was determined by NMR spectroscopy, measuring CH protons corresponding to ADA at 3.1τ and VAc at 5.1τ. The monomer reactivity ratios were evaluated; r1 = 1.34 ± 0.05 and r2 = 0.48 ± 0.03, where M1 = ADA and M2 = VAc. From these values the Q and e values for ADA were calculated: Q = 0.047 and e = 0.44 by taking Q = 0.026 and e = ?0.22 for VAc. The H value [1] for copolymerization of ADA, VAc, and vinyl chloride (VC) is 0.87.  相似文献   

15.
Free‐radical copolymerizations of vinyl acetate (VAc = M1) and other vinyl esters (= M2) including vinyl pivalate (VPi), vinyl 2,2‐bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) with fluoroalcohols and tetrahydrofuran (THF) as the solvents were investigated. The fluoroalcohols affected not only the stereochemistry but also the polymerization rate. The polymerization rate was higher in the fluoroalcohols than in THF. The accelerating effect of the fluoroalcohols on the polymerization was probably due to the interaction of the solvents with the ester side groups of the monomers and growing radical species. The difference in the monomer reactivity ratios (r1, r2) in THF and 2,2,2‐trifluoroethanol was relatively small for all reaction conditions and for the monomers tested in this work, whereas r1 increased in the VAc‐VF6Pi copolymerization and r2 decreased in the VAc‐VPi copolymerization when perfluoro‐tert‐butyl alcohol was used as the solvent. These results were ascribed to steric and monomer‐activating effects due to the hydrogen bonding between the monomers and solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 220–228, 2000  相似文献   

16.
The copolymerization of itaconic anhydride (M1) with four different monomers (M2), namely: vinyl acetate, 2-chloro-ethyl acrylate, acrylonitrile, and styrene, was studied. Values of r1 and r2 were determined for copolymerizations in benzene and for two of these systems, namely those with vinyl acetate and 2-chloroethyl acrylate. Values of r1 and r2 were also determined for copolymerizations in tetra-hydrofuran. The value of ri ranged from 0.53 to 4.8, but it was always very much greater than r2. The Q-e values for itaconic anhydride in all the systems studied were also calculated and the average values for Q1 = 8.2, e1 = 1.45 were determined.  相似文献   

17.
The new oxazoline-containing monomers, 4-acrylyloxymethyl-2,4-dimethyl-2-oxazoline (AOMO), 4-methacrylyloxymethyl-2,4-dimethyl-2-oxazoline (MAOMO), 4-methacrylyloxymethyl-2-phenyl-4-methyl-2-oxazoline (PMAOMO), and the previously known monomer, 2-isopropenyl-4,4-dimethyl-2-oxazoline (IPRO), were synthesized for addition polymerization studies. The monomers were homopolymerized in benzene using a free radical initiator and in aqueous media using emulsion techniques. Molecular weights of 8,000–15,000 (M?w) were obtained for the homopolymers. Copolymerization studies were carried out with AOMO, MAOMO, and IPRO as M1, and methyl methacrylate (MMA), methyl acrylate (MA), styrene (STY), acrylonitrile (AN), and vinyl acetate (VA) as M2 for each case of M1. Relative reactivity ratios for the fifteen copolymers and Q and e values for the three oxazoline monomers were determined. The r1 values for AOMO and MAOMO copolymerizations indicated a lower value of k11 than expected, presumably because of steric effects. The r1 values in the IPRO copolymerizations were somewhat larger than expected. It was proposed that significant electron donation to the radical center of IPRO·by resonance effects occured.  相似文献   

18.
Optically active mono-l-menthyl itaconate (MMI) was prepared from ita-conic acid and l-menthol. MMI was polymerized in bulk at 80°C to give a chiral homopolymer having -49.5° specific rotation. MMI (M1 was copolymerized with styrene (ST, M2), methyl methacrylate (MMA, M2), and N-cyclohexylmaleimide (CHMI, M2) by using 2,2′-azobisisobutyronitrile (AIBN) as the radical initiator and benzene as the polymerization solvent at 50°C. The monomer reactivity ratios (r1, r2) and Alfrey-Price Q, e values were determined to be r1 = 0.28, r2 = 0.32, Q1 = 0.90, and e1 = 0.75 in MMI-ST; r1 = 0.09 and r2 = 0.51 in MMI-MMA; and r1 = 0.78 and r2 = 0.39 in MMI-CHMI. The chiroptical properties of the polymers were investigated.  相似文献   

19.
Titanocene dichloride sensitized photopolymerization of vinyl ethers and styrene but did not polymerize methyl methacrylate and vinyl acetate. In the case of 2-chloroethyl vinyl ether, polymerization started rapidly some time after the color of the liquid had changed from orange to green. Polymerization was also achieved by heating the monomer at 60°C after stopping the irradiation at the end of the induction period. On the basis of the reactivity of the monomers and the effect of additives, polymerization is considered to proceed cationically. In case of the polymerization of styrene, conversion increased linearly with time. The k/kt value of 6.3 × 10?5l./mole-sec obtained for the polymerization of styrene agrees well with the value reported for radical polymerization. The agreement of the value and ineffective inhibition of polymerization in the presence of pyridine indicates the polymerization follows a radical mechanism. Copolymerization of styrene (M1) and 2-chloroethyl vinyl ether (M2) proceeded radically, and the reactivity ratios were r1 = 2.5 and r2 = 0.6.  相似文献   

20.
Three new monomers of p-phenylacrylamide derivatives were prepared by either the reaction of p-methyl-, p-nitro-, and p-chloroaniline with acryloyl chloride or with acrylic acid in the presence of dicyclohexyl carbodiimide (DCCI). The prepared monomers were copolymerized with each of tri-n-butyltinacrylate and tri-n-butyltinmethacrylate. Copolymerization reactions were carried out in dioxane at 70°C using 1 mol % azobisisobutyronitrile as a free radical initiator. The structure of the new monomers and the prepared copolymers were investigated by IR and 1H-NMR spectroscopy. The monomer reactivity ratios for the copolymerization of p-chlorophenylacrylamide (M1) with each of tri-n-butyltinacrylate (TBTA) and tri-n-butyltinmethacrylate (TBTMA) (M2) were found to be r1 = 2.6; r2 = 0.83 and r1 = 1.3; r2 = 1.71, respectively. In case of p-tolyacrylamide (M1) with TBTA and TBTMA (M2) r1 = 0.35, r2 = 1.03 and r1 = 1.38, r2 = 0.366 respectively. The Q and e values for the prepared p-tolyl- and p-chlorophenylacrylamide were calculated © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号