首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The thermal stabilities of various poly(alkyl methacrylate) homopolymers and poly(methyl methacrylate-g-dimethyl siloxane) (PMMA-g-PSX) graft copolymers have been determined by thermogravimetric analysis (TGA). As expected, the thermal stabilities of poly(alkyl methacrylates) were a function of the ester alkyl group, and polymerization mechanism. In particular, thermally labile linkages, which result from termination during free radical or nonliving polymerization mechanisms, decrease the ultimate thermal stabilities of the polymers. However, graft copolymers, which were prepared by the macromonomer technique with free radical initiators, exhibited enhanced thermal stability compared to homopolymer controls. A more complex free radical polymerization mechanism for the macromonomer modified polymerization may account for this result. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The controlled free radical polymerization of styrene and isoprene initiated with benzoyl peroxide (BPO) in the presence of 2,2,6,6-tetramethyl piperidine-N-oxyl (TEMPO) at 125 ℃ were performed. The obtained polyisoprene and polystyrene homopolymers served as macroinitiators for block copolymerization of isoprene and styrene to synthesize poly(styrene-b-isoprene) and poly(isoprene-b-styrene) diblock copolymers. Diblock copolymers with well-defined structures as well as controlled and narrow molecular weight distribution wereobtained from the lower-mass polystyrene and polyisoprene homopolymers. These copolymers were found to be active as macroinitiators in the synthesis of the poly(styrene-b-isoprene-b-styrene) and poly(isoprene-b-styrene-b-isoprene) triblock copolymers. 1H-NMR spectroscopy and gel permeation chromatography (GPC) were used for the investigation of polymer strucmre, molecular weight and polydispersity (PD).  相似文献   

3.
Blends of self‐assembling polystyrene‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) diblock‐copolymers and poly(4‐vinyl pyridine) (P4VP) homopolymers were used to fabricate isoporous and nanoporous films. Block copolymers (BCP) self‐assembled into a structure where the minority component forms very uniform cylinders, while homopolymers, resided in the core of the cylinders. Selective removal of the homopolymers by ethanol immersion led to the formation of well‐ordered pores. In films without added homopolymer, just immersion in ethanol and subsequent swelling of the P4VP blocks was found to be sufficient to create pores. Pore sizes were tuned between 10 and 50 nm by simply varying the homopolymer content and the molecular weight of the block‐copolymer. Uniformity was lost when the average pore size exceeded 30 nm because of macrophase separation. However, preparation of films from low MW diblock copolymers showed that it is possible to have excellent pore size control and a high porosity, while retaining a low pore size distribution. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1568–1579  相似文献   

4.
Composite ultrafiltration membranes were fabricated by coating a thin film of self‐assembling polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers and poly(acrylic acid) homopolymers on top of a support membrane. Block copolymers self‐assembled into a nanostructure where the minority component forms cylinders, whereas homopolymers reside in the core of the cylinders. Selective removal of the homopolymers led to the formation of pores. The morphology of the polymer layer was controlled by varying the content of homopolymers or polymer concentration of the coating solution, which led to membranes with different molecular weight cutoffs (MWCOs) and permeabilities. Uniform pores were obtained using low homopolymer contents, whereas high homopolymer contents caused macrophase separation and resulted in large polydisperse pores or craters at the surface. The thickness of the block copolymer film also influenced the structure and performance of the membranes, where a thicker film results in a strong decrease in permeability but a lower MWCO. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1546–1558  相似文献   

5.
The phase behavior of a series of styrene/maleic anhydride (SMA) copolymers with various polyacrylate and polymethacrylate homopolymers has been investigated using various techniques. None of the polyacrylates are miscible with SMA copolymers. Poly (methyl methacrylate) (PMMA) poly(ethyl methacrylate) (PEMA) and poly(n-propyl methacrylate) (PnPMA), are miscible with these copolymers over a certain range of maleic anhydride contents; whereas, the higher methacrylates apparently have no region of miscibility. For PEMA and PnPMA, the miscibility windows extend through 0% MA; hence, polystyrene is miscible with these polymethacrylates although the lower critical solution temperature is quite low. The exothermic heat of mixing styrene and ester analogs found here supports the observed miscibility of polystyrene with ethyl, n-propyl, and cyclohexyl (reported elsewhere) methacrylates. Lattice fluid interaction parameters for styrene-methacrylate obtained from the cloud points of these blends agree quite well with the Flory—Huggins parameters obtained from copolymer miscibility windows.  相似文献   

6.
AB_2型星形杂臂偶氮液晶聚合物的合成及表征   总被引:1,自引:1,他引:1  
通过原子转移自由基聚合(ATRP)与ATRP衍生物化学修饰结合的方法,合成了一系列AB2型星形杂臂偶氮液晶聚合物.其中,A为聚苯乙烯,B为聚6-[4-(4′-甲氧基苯基)偶氮苯氧基己酯](PMMAZO).合成分三步进行.首先,以ATRP方法得到ω-溴聚苯乙烯活性链PS(Br).然后对PS(Br)进行化学改性,得到带两个末端溴原子的聚苯乙烯活性链PS(Br)2·最后,以PS(Br)2作为双官能团大分子引发剂,引发6-[4-(4′-甲氧基苯基)偶氮苯氧基]己酯(MMAZO)发生ATRP聚合,得到星形杂臂PS(PMMAZO)2聚合物.进一步对聚合产物进行了GPC和1H-NMR分析.结果表明合成产物是预期的星形杂臂聚合物,产物分子量可控且分子量分布狭窄.同时,以DSC和POM表征了星形杂臂聚合物的液晶性.  相似文献   

7.
Abstract

Ultrasonic (20 kHz, 70 W) solution degradations of polystyrene, substituted polystyrenes, and poly(n-vinyl carbazole) have been carried in toluene and tetrahydrofuran at 27 and -20°C in the presence of flexible chain polymers. Polystyrene formed block copolymers at 27°C with stiff-chain polymer PVCz; however, in the presence of flexible chain polymers, e.g., poly(vinyl methyl ketone) or poly(vinyl methyl ether), there were no block copolymers formed. Poly(n-vinyl carbazole) does not seem to form any block copolymers at 27°C with flexible chain polymers, e.g., poly(octadecyl methacrylate) and poly(ethyl methacrylate). Poly(p-chlorostyrene) and poly(p-methoxystyrene) also do not form block copolymers at 27°C with poly(octadecyl methacrylate) but do so with poly(hexadecyl methacrylate). It is quite possible that these may only be blends of two homopolymers. Poly(octa-decyl methacrylate) does yield a block copolymer when sonicated at -15°C with poly(p-isopropyl α-methylstyrene).  相似文献   

8.
The solubility and mesophase behavior are investigated for block copolymers of poly(p-benzamide) (PBA), the polyterephthalamide of p-aminobenzhydrazide (PABH-T), and PBA and poly(m-phenylene isophthalamide) (MPD-I) dissolved in N,N-dimethylacetamide (DMAc) containing 3% LiCl. The block copolymers, whose synthesis and characterization were described in the previous paper in this series, included samples prepared by the two-step and multistep copolycondensations. The first of these methods yields a considerable amount of the flexible homopolymer (PABH-T) and also some of the rigid homopolymer. The flexible homopolymer can be removed from the block copolymer by extraction with dimethyl sulfoxide (DMSO), whereas precipitation may offer a way to remove the rigid homopolymer. The results observed for the block copolymers are compared with those for the homopolymers and mixtures of homopolymers. The apparent solubility of the PBA/PABH-T block copolymers obtained by the two-step method is unusually large but decreases toward the value observed for mixtures after the flexible homopolymer had been extracted with DMSO. Labile adducts involving PABH-T and/or the block copolymer appear to be capable of forming a single mesophase. This offers a most interesting approach to the preparation of composite materials involving rigid and flexible polymers.  相似文献   

9.
聚苯乙烯-甲基丙烯酸甲酯接枝共聚物的合成和表征   总被引:3,自引:0,他引:3  
<正> 聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)都是研究得十分深入的聚合物。它们的接枝共聚物,虽然在基础研究中是十分有兴趣的对象,但因传统的合成方法不能得到结构确定的产物,同时难于与伴生的均聚物分离,进展不大。近年来随着大分子单体方法和极性单体活性阴离子聚合的发展,具有确定结构的接枝共聚物PS-g-PMMA的合成逐步成为可能。例如:Ishizu采用阴离子聚合合成带乙烯基的PMMA大分子单体,再与苯乙烯自由基共聚的路线,Ballegoole等和Watanable分别采用主干接枝法,即用自  相似文献   

10.
An improved technique for casting highly oriented films of block copolymers from solutions subjected to flow is presented. Polymer solutions were rolled between two counter-rotating adjacent cylinders while at the same time the solvent was allowed to evaporate. As the solvent evaporated, the block copolymers microphase separated into globally oriented structures. Using this method known as ‘roll-casting’ we present in this paper a study of the morphology of polystyrene-polybutadiene-polystyrene (PS/PB/PS) triblock copolymer cast with and without additional high molecular weight homopolymers. The pure copolymer films consisted of polystyrene cylinders assembled on a hexagonal lattice in a polybutadiene matrix in a near single-crystal structure. Blends of copolymer with high molecular weight polystyrene and/or polybutadiene, phase separated into ellipsoidal regions of homopolymer embedded in an oriented block copolymer matrix. Annealing the films resulted in conversion of the homopolymer regions to spheres accompanied by some misalignment of the copolymer microdomains. The morphology of these films as revealed by TEM is discussed. A brief discussion of the flow field that develops in the experimental system is also presented and its similarity to the flow field of our previous work is shown. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The synthesis of multiarm star block (and mixed‐block) copolymers are efficiently prepared by using Cu(I) catalyzed azide‐alkyne click reaction and the arm‐first approach. α‐Silyl protected alkyne polystyrene (α‐silyl‐alkyne‐PS) was prepared by ATRP of styrene (St) and used as macroinitiator in a crosslinking reaction with divinyl benzene to successfully give multiarm star homopolymer with alkyne periphery. Linear azide end‐functionalized poly(ethylene glycol) (PEG‐N3) and poly (tert‐butyl acrylate) (PtBA‐N3) were simply clicked with the multiarm star polymer described earlier to form star block or mixed‐block copolymers in N,N‐dimethyl formamide at room temperature for 24 h. Obtained multiarm star block and mixed‐block copolymers were identified by using 1H NMR, GPC, triple detection‐GPC, atomic force microscopy, and dynamic light scattering measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 99–108, 2010  相似文献   

12.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

13.
A new soluble terephthaloyl oligoperoxide (OTP) was synthesized by the reaction of terephthaloyl peroxide and 2,5‐dimethyl 2,5‐dihydroperoxy hexane. Thermal polymerization of vinyl monomers (styrene, methyl methacrylate) with OTP yielded poly(styrene peroxide) (PS‐P) and poly(methyl methacrylate peroxide) (PMMA‐P) which are used in the grafting reactions onto medium chain length unsaturated bacterial polyester obtained from soybean oily acids with Pseudomonas oleovorans poly(3‐hydroxy alkanoate), (PHA). PS‐g‐PHA and PMMA‐g‐PHA graft copolymers isolated from related homopolymers were characterizated by 1H NMR spectrometry, FT‐IR spectroscopy, thermal analysis and gel permeation chromatographic (GPC) techniques. Swelling measurement of the crosslinked graft copolymers were also measured to calculate qv values.  相似文献   

14.
可反复化学循环、可生物降解的聚对二氧环己酮(PPDO),存在水解降解快等问题,不利于其储存和使用.基于此,本文通过将不同正烷基取代的δ-内酯(RVL)分别与对二氧环己酮(PDO)在磷酸二苯酯催化下本体共聚,高效地合成了3种结构和组分可控的PPDO基共聚物(PDRVL).通过热重分析(TGA)、差示扫描量热分析(DSC)...  相似文献   

15.
Controlled polystyrenes with different molar mass values were synthesized starting from benzoyl peroxide and TEMPO (2,2,6,6‐tetramethylpiperidinyl‐1‐oxy). The polystyrene homopolymers served as initiators for the block copolymerization of phthalimide methylstyrene (PIMS) to synthesize polystyrene‐b‐poly(PIMS) diblock copolymers. Diblock copolymers with well defined structures as well as controlled and narrow molar mass distribution were obtained from the lower‐mass polystyrene homopolymers. The lower‐mass copolymers were found to be active as initiators in the synthesis of the polystyrene‐b‐poly(PIMS)‐b‐polystyrene triblock copolymers. In each reaction step, the effects of conversion and reaction time on the molar mass characteristics of the prepared block copolymers were investigated. The diblock and triblock copolymers were modified using hydrazine as the reagent in order to obtain the corresponding functional amino block copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1237–1244, 1999  相似文献   

16.
Well defined graft copolymers are prepared by “grafting from” atom transfer radical polymerization (ATRP) at room temperature (30 °C). The experiments were aimed at grafting methacrylates and styrene at latent initiating sites of polystyrene. For this purpose, the benzylic hydrogen in polystyrene was subjected to allylic bromination with N‐bromosuccinimide and azobisisobutrylnitirle to generate tertiary bromide ATRP initiating sites (Br? C? PS). The use of Br? C? PS with lesser mol % of bromide initiating groups results in better control and successful graft copolymerization. This was used to synthesize a series of new graft copolymers such as PS‐g‐PBnMA, PS‐g‐PBMA, PS‐g‐GMA, and PS‐g‐(PMMA‐b‐PtBA) catalyzed by CuBr/PMDETA system, in bulk, at room temperature. The polymers are characterized by GPC, NMR, FTIR, TEM, and TGA. Graft copolymerization followed by block polymerization enabled the synthesis of highly branched polymer brush, in which the grafting density can be adjusted by appropriate choice of bromide concentration in the polystyrene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3818–3832, 2007  相似文献   

17.
We have studied the effect of polystyrene (PS) homopolymer addition on the morphology of self-assembled block copolymer micelles made from linear or cyclic poly(styrene-b-isoprene), PS-b-PI, in a selective solvent for the PI block (heptane). Both copolymers have the same composition: the degree of polymerization is 290 for the PS block, and 110 for the PI block, and we focused on the influence of the addition of small amounts of PS homopolymer on the micellar morphology. For the copolymer concentrations considered, the linear copolymer self-organizes into spherical micelles while the cyclic copolymer forms cylindrical micelles. PS and PI chains constitute the core and the corona of these micelles, respectively, due to the different affinity of the blocks for heptane. Consequently, the PS homopolymer added is "solubilized" into the micellar core. Dynamic light scattering (DLS) data combined with atomic force microscopy (AFM) results show that the addition of PS homopolymer induces a drastic change in the micellar organization. Indeed, a morphological transition, from spheres to cylinders for the linear copolymer, and from cylinders to vesicles for the cyclic copolymer, is observed. These results highlight the fact that a small incorporation of PS homopolymer is clearly sufficient to modify the morphology (size and shape) of the micelles. This approach could be a key parameter for the design/control of micelles for specific applications in nanotechnology.  相似文献   

18.
Main-chain chirality is the optical activity resulting from the configurational or conformational arrangement in the main chain of a polymer. The chirality of the most important types of structures has been investigated on the basis of systematic considerations of symmetry. This has led to the surprising result that even in polymers derived from 1-substituted or nonsymmetric 1,1-disubstituted olefins (the technologically most important polymers) several types of chiral structures exist, which are expected to result in optical activity if a particular enantiomer is favorably formed. By carrying out an asymmetric cyclopolymerization, it has been possible to obtain certain structural types in the form of optically active copolymers or homopolymers (e.g., copolymers of styrene with methyl methacrylate, or even the homopolymer of styrene). Another new group of optically active polymers consists of the atropisomeric helical polyisocyanides, poly(trityl methacrylates), and polychlorals. Optically active polymers are already used as adsorbents for the chromatographic separation of racemic mixtures. Further applications are likely to emerge.  相似文献   

19.
Control of nanoparticle location in block copolymers   总被引:1,自引:0,他引:1  
A simple procedure is described to incorporate gold nanoparticles and control their location within symmetric poly(styrene-b-2 vinyl pyridine) (PS-PVP) diblock copolymers. Gold nanoparticles coated with thiol-terminated PS and/or PVP homopolymer chains (Mn approximately 1300 and 1500 g/mol, respectively) are incorporated into alternating lamellar layers of PS and PVP (total Mn approximately 196 500 g/mol). The location of the particles is controlled by varying the composition of ligands on the particle surfaces. In particular, gold particles coated with 100% PS or PVP reside near the center of the respective polymer domains, while particles coated with a mixture of both homopolymers reside at the interfaces between the two blocks.  相似文献   

20.
The effect of graft copolymer on the demixing of solutions of two immiscible homopolymers and critical conditions for emulsion formation were studied. The graft copolymer used in the present work consists of one backbone poly(vinyl acetate) (PVAc) and one branch polystyrene (PS). PVAc and PS of various degrees of polymerization were used as immiscible homopolymers. The common solvent was benzene. When the concentration of homopolymer blend was not sufficiently higher than the critical concentration for demixing of the blend solution, no stable emulsion was formed, even when a considerable amount of graft copolymer was present, and the added graft copolymer merely reduced the demixing rate. However, as the blend concentration was increased, a stable emulsion could readily be obtained by addition of rather small amounts of graft copolymer. The radius of emulsion droplets was inversely proportional to the weight ratio of the graft copolymer to the dispersed component polymer, in accordance with the theoretical prediction. It was concluded that the emulsions were stabilized against coagulation by graft copolymer molecules fixed strongly as a monolayer on the interface of the emulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号