首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dilatometer capable of being rapidly filled with monomer and initiator solutions mixed under carefully controlled conditions and a modification of an NMR T1 program, adapted to store and display on recall the results of frequent sweeps at 30-s intervals of relevant proton resonances of a polymerizing mixture, are reported. These techniques have been applied to the identification of the optimum conditions for efficient, initiation of isotactic polymerization and investigation of the mechanism of propagation. It is shown that heat treatment does not remove the coordinated THF (1 molecule per RMg group) when toluene-soluble “tBuMgBr” or “PhMgBr” initiators are prepared and that the optimum THF concentration is slightly in excess of this. The nature of the solute in the toluene-soluble initiator solutions is discussed. The kinetics of the polymerization change from internal zero order to internal order of one with respect to monomer as the temperature increases from 225–275 K. This is consistent with a previously proposed mechanism in which propagation proceeds through a complex between monomer and the active center.  相似文献   

2.
The copolymerization of benzofuran and acrylic monomers, such as acrylonitrile, methacrylonitrile, methyl acrylate, and methyl methacrylate, was investigated in the presence of aluminum compounds as complexing agents for acrylic monomers. Among the various kinds of aluminum compound, ethylaluminum sesquichloride is the most suitable for alternating copolymerization, whereas ethoxyaluminum compounds of low acidity allow the incorporation of excess acrylic monomer and dichloride of strong acidity is likely to induce cationic homopolymerization of benzofuran as a side reaction. The equimolar amount of sesquichloride with respect to acrylic monomer is necessary for alternating copolymerization. Azobisisobutylonitrile (AIBN) is an effective initiator but benzoyl peroxide is not. Nuclear magnetic resonance (NMR) of the copolymer indicates that the copolymer is essentially alternating, although some block sequences of acrylic monomer sometimes exist. As a mechanism the copolymerization via a ternary complex of acrylic monomer, aluminum compound, and benzofuran is considered. Free acrylic monomer participates in copolymerization when the amount or acidity of the complexing agent is insufficient. A quantitative relation between monomer and copolymer composition is derived from a scheme based on the copolymerization of the donor monomer-acceptor monomer complex with free acrylic monomer.  相似文献   

3.
The radical copolymerization of sulfur dioxide and chloroprene (CP) in benzene was carried out, especially as a function of the total monomer concentration ([SO2] + [CP]). The composition of chloroprene polysulfones varies mainly with total monomer concentration and with polymerization temperature, but depends very slightly on feed composition. The microstructure of chloroprene units in chloroprene polysulfone was such that the trans-1,4 unit was predominantly over the cis-1,4 unit. Thus it would seem possible to rule out both radical copolymerization mechanisms, i.e., propagation of separate monomers as explained by the Lewis-Mayo equation, and propagation processes involving a monomer charge-transfer complex.  相似文献   

4.
A kinetic investigation of the alternating copolymerization of butadiene and methyl methacrylate with the use of a system of ethylaluminum dichloride and vanadyl chloride as a catalyst was undertaken. The relation between the polymer yield and the molar fraction of methyl methacrylate in the feed was examined by continuous variation of butadiene and methyl methacrylate, the concentrations of total monomer, ethylaluminum dichloride, and vanadyl chloride being kept constant. This continuous variation method revealed that the polymer yield attains its maximum value with a monomer feed containing less than the 0.5 molar fraction of methyl methacrylate. This value of the molar fraction of methyl methacrylate affording the maximum polymer yield decreased on increasing the total monomer concentration but was not changed on varying the concentration of ethylaluminum dichloride. The number of active species estimated from the relation between yield and molecular weight of the polymer was almost constant, regardless of the molar fraction of methyl methacrylate in the feed. Consequently, it can be said that the maximum polymer yield depends mainly on the propagation reaction, not on the initiation reaction or the termination reaction. Three types of the mechanism have been discussed for this alternating copolymerization: polymerization via alternating addition of butadiene and methyl methacrylate complexed with ethylaluminum dichloride by the Lewis-Mayo scheme; polymerization via the ternary intermediate of butadiene, methyl methacrylate, and ethylaluminum dichloride; polymerization via the complex formation of butadiene and methyl methacrylate complexed with ethylaluminum dichloride occurring only at the growing polymer radical. From the kinetic results obtained, it was shown that the first and third schemes are excluded, and polymerization by way of the ternary intermediate is compatible with the data.  相似文献   

5.
Photopolymerization of acrylonitrile (AN), an acceptor monomer, was found to be accelerated in the presence of isobutyl vinyl ether (IBVE), a donor monomer. The propagation is completed by a radical mechanism as judged by copolymer compositions; in contrast to the N-vinylcarbazole–AN system studied previously. This photopolymerization system is entirely stable if kept in the dark. The comparison of the relation between Rp and [IBVE]/[AN] ratio in the monomer feed found for the spontaneous photopolymerization with that for radical polymerization initiated by azobisisobutylonitrile in the dark leads to the conclusion that the rate of photoinitiation is enhanced by the interaction between AN and IBVE, whereas the propagation step by a radical mechanism is retarded by increasing concentration of IBVE. The contact charge-transfer complex between IBVE and AN was confirmed by electronic spectroscopy of the polymerization system, which showed photosensitization by charge-transfer interaction. The spectroscopic study of other weak donor–weak acceptor systems is also discussed.  相似文献   

6.
Radical copolymerization of sulfur dioxide and vinyl chloride (VC) has been studied by the comparison of the composition of copolymers obtaining from different reaction conditions, i.e., reaction temperatures, feed compositions, and total monomer concentrations. The composition of VC in copolymer is independent of comonomer composition except at high concentration of VC in feed; it increases with increasing reaction temperature or decreasing total monomer concentration. At lower temperature, the composition of copolymer becomes independent of total monomer concentration. The overall rate of polymerization is proportional to [VC]1,7 and [SO2]0.5. These results were compared with those obtained in our previous study on the SO2-styrene copolymerization. A propagation mechanism for radical copolymerization of SO2 and VC is also proposed.  相似文献   

7.
Ring opening polymerization (ROP) of (R,S)-β-butyrolactone (BL) using dibutylmagnesium (Bu2Mg) as initiator was investigated both in bulk and in solution. The synthetic poly-3-hydroxybutyrates (P3HB) were characterized by 1H NMR, 13C NMR, FT-IR and GPC. Effects of molar ratio of initiator to monomer, reaction temperature and time on the monomer conversion and the polymer molecular weight and its distribution were discussed. The kinetics of the solution polymerization of BL was examined and showed a first order both in monomer concentration and initiator concentration. The end groups analysis suggested that the monomer inserted into the growing chain proceeding through the coordination-insertion mechanism based on the acyl-oxygen bond scission rather than the alkyl-oxygen bond cleavage of the BL ring. Furthermore, a possible mechanism for the initiation and propagation procedures of P3HB synthesized from BL with Bu2Mg was proposed.  相似文献   

8.
Trisubstituted ethylene, ethyl α-cyanocinnamate, is readily copolymerized with vinyl acetate by a conventional radical initiator. Terminal, penultimate, and “complex” copolymerization models were applied by using the data of composition of the copolymers obtained in bulk and by copolymerization in benzene, ethyl acetate, and chloroform. The model based on the participation of the monomer complexes describes satisfactorily the deviation from the terminal copolymerization model. The proton NMR analyses of the monomer mixtures indicate that the interaction between the monomers leads to the formation of weak monomer complexes. Kinetic studies of the initial rate dependence on the total monomer concentration and monomer feed composition enabled us to evaluate the degree of participation of the free uncomplexed monomers and the monomer complex in the propagation reactions. The contribution of the complexed monomers in the propagation stages increases with the increase in total monomer concentration. The initial rate of the copolymerization is proportional to the square root of the initiator concentration, thus confirming the bimolecular termination of the macrochains. The rate constants of the addition reactions of the complex and free monomers were evaluated from the kinetic studies. The quantitative kinetic treatment provided information regarding the relative weight of the termination reaction and indicated that the termination in the system occurs predominantly by the cross-termination reaction between two growing polymer radicals with different kinds of monomer units at the ends. Additional information on the termination in this system was obtained from viscosity measurements.  相似文献   

9.
Novel dimethacrylate monomers containing bis(aminodiacetic acid) chelating ligands with or without additional hydroxyl groups were synthesized, starting from 2,2‐bis(4‐hydroxy‐3‐methylphenyl)propane. The structures of the monomers were characterized by electrospray mass spectrometry (ESMS), 1H NMR, and 13C NMR. The structures and relative stability of fluoride‐releasing monomers containing one or more ternary zirconium fluoride complex moieties were studied by ESMS. The most stable ternary zirconium fluoride complex was in the form of [LZrF]?, where H4L is the monomer containing bis(aminodiacetic acid) without additional hydroxyl groups. The synthesized monomer was photopolymerized with camphorquinone and 1‐phenyl‐1,2‐propane‐dione as initiators and N,N‐dimethylaminoethyl methacrylate as the accelerator. The fluoride release, fluoride recharge, compressive strength, and flexure strength were tested on the experimental dental composite containing 13.7 wt % synthesized monomer and three commercial flowable dental composites. The results showed that the experimental composite has significantly higher fluoride release and recharge capabilities than the commercial flowable composites. The compressive strength was comparable to that of the commercial materials. The water sorption and solubility met the requirement of the ISO Specification 4049. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3153–3166, 2005  相似文献   

10.

Free radical solution copolymerization of styrene (St) and itaconic acid (IA) in dimethylsulfoxide‐d6 (DMSO‐d6) as the solvent and the use of 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at 78°C was investigated by an on‐line 1H‐NMR spectroscopy technique. Individual monomer conversion vs. reaction time, which was calculated from the 1H‐NMR spectra data, was used to study the drift in monomer mixture composition vs. conversion. It was found that in general, both monomers were incorporated almost equally into the copolymer. However, when the mole fraction of IA was low, the tendency of IA toward incorporation into the copolymer chain was somewhat higher than St and by increasing the mole fraction of IA in the reaction mixture, the inverse tendency was observed. Overall monomer conversion as a function of time was calculated from individual monomer conversion data and used for the estimation of kp /kt 0.5 for various monomer mixture compositions. This ratio was decreased with increasing the amount of IA in the initial feed, indicating a decrease in the rate of copolymerization. Changes in the copolymer composition vs. overall monomer conversion were investigated experimentally from the NMR spectra. This was in good agreement with the changes in monomer mixture composition vs. reaction progress. Plotting the copolymer composition vs. initial monomer feed showed tendency of the system toward alternating copolymerization.  相似文献   

11.
The proposed mechanism of initiation and course of ring‐opening polymerization of cyclic trimethylene carbonate (TMC) involving zinc(II) acetylacetonate is in accordance with the mechanism of monomer activation. At the first stage of the process, coordination of carbonate to Zn(Acac)2 · H2O complex occurs with the release of weakly coordinated water molecules. This free water molecule reacts with active TMC–Zn(Acac)2 complex. The reaction results in the formation of propanediol and CO2 emission. During further stages of the investigated process, the formed propanediols, or later the oligomeric diols produced with polymerization, are cocatalysts of the chain propagation reaction. The chain propagation occurs because of repeating activation of the TMC monomer through the creation of an active structure resulting in the exchange/transfer reaction between the zinc complex and the monomer, with its following attachment to the hydroxyl groups, carbonate ring opening, and formation of the carbonic unit of polymer chain. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Two new redox systems, viz. KMnO4 with ethyleneglycol and KMnO4 with thioglycollic acid, have been used as initiators for the polymerization of the divinyl monomer, N,N′-methylenebisacrylamide. The initiating radical is formed when a monomer-Mn3+ complex interacts with the redox complex. An intramolecular cyclization prior to propagation is involved in the mechanism suggested to explain the kinetics. The higher rate of polymerization for this monomer, when compared with acrylamide and methacrylamide, gives added evidence for this new type of propagation.  相似文献   

13.
Highly crystalline poly(methyl vinyl ether) (PMVE) was produced in toluene in a temperature range of 0 to ?20°C. with the use of sulfuric acid–aluminum sulfate complex (SA catalyst). It was found from the NMR spectra that these polymers contained more than 50% of the triad isotactic fraction and the melting point of the unfractionated polymer was about 130°C. However, PMVE containing a large amount of the isotactic fraction was insoluble in nitromethane, so the triad tacticity of highly crystalline PMVE could not be quantitatively determined. The molecular weight of PMVE increased with increasing conversion and increasing polymerization temperature. This behavior is different from that in metal halide catalysts. Also, the stereoregularity of PMVE decreased with increasing monomer concentration. However, addition of a polar solvent and increasing the polymerization temperature had little effect on the stereoregularity of the polymer. The increase in the isotactic fraction at high catalyst concentration and the difference in the monomer composition in the copolymerization of methyl vinyl ether with 2-chloroethyl vinyl ether by SA catalyst from that obtained by BF3·O(C2H5)2 suggest that the absorption of MVE on a catalyst surface is an important step in the propagation step by SA catalyst. The fraction of the triad tacticity calculated from the enantiomorphic catalyst sites model8 coincided with the experimental results. This fact shows that the steric structure of the adding monomer is determined only by the nature of the catalyst irrespective of the nature of a growing chain end. It is concluded, on considering also the results of the previous paper, that completely different factors can control the steric structure of a polymer even for the same monomer when different catalysts are used.  相似文献   

14.
The polymerization of acrylic acid proceeds with an extremely high degree of auto-acceleration in certain ternary mixtures. The most drastic effects are observed when small amounts of methanol are added to a dilute solution of acrylic acid in n-hexane. In such systems the auto-acceleration index “β” may exceed 10. β Was found to exhibit a maximum over a fairly narrow range of concentrations. Moreover, the values of β are highest at temperatures between ?5 and + 10°, where a maximum of 16 is reached. The swelling of poly(acrylic acid) in the various reacting mixtures was measured and the molecular associations of the monomer with itself and with methanol were investigated. It was concluded that the “exaltation of the matrix effect” in some of the systems is caused by the complex [(Acrylic acid)2, McOH]. This complex associates very rapidly with the polymer formed in the early stages of the reaction to produce a structure in which ultrafast propagation occurs. The swelling of the polymer favours the accessibility of the monomer to the polymeric chains during polymerization, leading to auto-acceleration which progresses with conversion and gives rise to a reaction with explosive character.  相似文献   

15.
16.
Abstract

The kinetics of the AIBN-initiated copolymerization of divinyl ether (DVE) and ethyl vinyl ether (EVE) with maleic anhydride (MA) was extensively studied in seven different solvents. The yield at 100% conversion as a function of the feed composition when the total monomer concentration is kept constant gave a confirmation of the composition of these copolymers: DVE/MA=½ and EVE/MA=1/1. The study of the initial rate as a function of the feed composition made it possible to determine the relative values of the different propagation rate constants consistent with a mechanism by successive and selective additions: in the EVE-MA system, the addition of EVE is slower than the addition of MA; in the DVE-MA system, the addition of DVE is slower than the addition of the first MA molecule, while the addition of the second MA molecule is slower than the first one. The study of the dependence of the monomer concentration, of the AIBN concentration, and of the efficiency of the initiator, on the rate of polymerization, shows finally that the true order of the monomer concentration is close to 1 while its apparent order varies from 1 to 2. From all the kinetic data it was observed that the mechanism of these co polymerizations can be explained without reliving upon the concept of participation of the charge-transfer complex formed between the monomers. However, participation of the complex in a competing mechanism with the above cannot be completely excluded.  相似文献   

17.
The radical terpolymerization of sulfur dioxide, styrene, and methyl methacrylate in o-dichlorobenzene with 2,2′-azobisisobutyronitrile was carried out in order to clarify the propagation mechanism of the radical copolymerization of sulfur dioxide and styrene, especially as a function of total concentration of sulfur dioxide and styrene. From the analysis of the trigonal composition diagrams it has been definitely shown that the radical copolymerization of sulfur dioxide and styrene proceeds by the propagation of two monomers, but the usual type of copolymerization mechanism, explicable in terms of the Lewis-Mayo equation, is not applicable to this copolymerization. The participation in the propagation of a monomer charge-transfer complex consisting of sulfur dioxide and styrene was also ruled out.  相似文献   

18.
The presumable change of monomer feed composition in the vicinity of the propagating macroradical due to formation of a polymer microphase specifically affects the composition and microstructure of the obtained copolymer. The quantitative aspects of this so-called bootstrap effect are compared in the cases of propagation obeying terminal, penultimate, or complex addition mechanism. An attempt is made to demonstrate which propagation mechanisms lead to an unambiguous relation between copolymer composition and microstructure. New methods are proposed for the determination of the intrinsic parameters of the above mechanisms including an indirect though absolute method for the determination of the monomer distribution between the solvent and the polymer microphases. The results could help to relate more reliably the copolymerizations studied experimentally to a certain theoretical model. A set of quantitative criteria is proposed to this aim.  相似文献   

19.
The kinetics of the solution polymerization of methyl methacrylate in THF, toluene and their mixtures were studied between 200 and 300 K using dilatometry (in the systems where it was valid), gravimetric determination and monitoring monomer and polymer concentrations by NMR spectrometry. The reaction followed zero order kinetics at 200 K, first order kinetics at 275 K and mixed order in between. At both the limits and intermediate range, the reaction followed an integrated rate equation consistent with terminationless propagation proceeding through a complex between monomer and the propagating species. Above 275 K, termination and side reactions were evident and the yields of high mol. wt polymer were small. Density-temperature calibrations for monomer in THF, toluene and mixtures were constructed for the range 190–283 K. However for polymerizations in toluene-rich mixtures, where very high mol. wt polymer forms, the contraction did not correlate linearly with conversion.  相似文献   

20.
Terpolymerization of tetrafluoroethylene (TFE) with propylene (P) and n-butyl vinyl ether (NBVE) induced by γ-rays at room temperature at dose rate 5 × 105 rad/h and P/NBVE molar ratio from 49/1 to 10/40 was carried out. An alternating copolymerization between TFE and two α-olefins was found to take place in this system, so that 50 mole % of TFE containing terpolymer is always formed at various monomer compositions. The terpolymer composition can be explained successfully by the treatment by a complex mechanism. The complex reactivity ratios of rI (TFE–complex) and rII (TFE-NBVE complex) were calculated to be 0.5 and 0.6, respectively, assuming a complex mechanism. The polymerization rate and molecular weight increase with NBVE concentration in the monomer mixture. Colorless transparent rubber-like polymers were obtained at each monomer composition. The glass transition temperature sharply decreases with NBVE concentration in the terpolymer but the thermal and chemical resistances of the terpolymer slightly decrease. Considering these results together with the mechanical properties it has been concluded that the 45/48/7 terpolymer of TFE/P/NBVE molar ratio is good as a practical elastomer useful at relatively low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号