首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of triphenyl phosphite (TPP) on the radical polymerization of styrene (St) and methyl methacrylate (MMA) initiated with α,α,-azobisisobutyronitrile (AIBN) was investigated at 50°C. The rate of polymerization of St and MMA at a constant concentration of TPP was found to be proportional to the monomer concentration and the square root of the initiator concentration. The rate of polymerization and the degree of polymerization of both St and MMA increased with increasing TPP concentration. The accelerating effect was shown to be due to the decrease of the termination rate constant kt with an increase in the viscosity of the polymerization systems. The chain transfer constant Ctr of TPP in St and MMA systems was determined from the degree of polymerization system. The Ctr of TPP was almost zero in the St system and 6.5 × 10?5 in the MMA system.  相似文献   

2.
Methyl methacrylate (MMA) was polymerized at 40 in the presence of dimethyl formamide (DMF), using cetyl trimethyl ammonium bromide with benzoyl peroxide (CTABBZ2O2) as the initiating system. At high dilutions the rate of polymerization was proportional to (initiator)1–2. In near-bulk conditions using low [DMF], the rate was practically independent of [BZ2O2], while the kinetic order with respect to CTAB was about 0.16. The polymerization was inhibited by hydroquinone. A radical mechanism is suggested for the polymerization with primary radical termination significant in near-bulk systems and bimolecular termination significant for high dilution with DMF. Effects of various other solvents or additives on the polymerization were examined. DMF, acetonitrile and pyridine act as rate accelerating diluents; benzene, methanol, chloroform and acetone as inert diluents; formamide and acetamide cause pronounced retardation.  相似文献   

3.
The kinetics of vinyl chloride polymerization initiated by benzoyl peroxide doubly labelled with 14C and 'H were studied in 1,2-dichloroethane solution at 60°. The importance of primary radical termination in the polymerization is examined by kinetic analysis and by analysis of polymers for combined initiator fragments.  相似文献   

4.
Photopolymerization of MMA in visible light was studied at 40 using THF-SO2 complex as the photoinitiator. Initiator exponent was 0.19 and monomer exponent lay between 1.0 and 1.5, depending on thenature of solvent. Analysis of kinetic and other data indicate that the polymerization proceeds by a radical mechanism and termination is initiator dependent. Chain termination via degradative chain (initiator) transfer appears to be significant feature.  相似文献   

5.
Abstract

Kinetics of vinyl polymerization of methyl methacrylate (MMA) initiated by an acidic peroxo salt, such as potassium monopersulfate coupled with silver nitrate, have been investigated in aqueous medium over the temperature range from 35 to 50°C. The rates of polymerization (Rp) have been computed for various concentrations of the monomer and initiator. The effectiveness of various metal salts in catalyzing the polymerization reaction has been determined from the observed Rp values. The effects of the catalyst (AgNO3), initiator, monomer, and various secondary aliphatic and aromatic amines on Rp and percentage conversion have been studied. The endgroups of the resultant polymers have been studied using standard methods. From the observed endgroups and kinetic results, a reaction scheme has been proposed involving initiation by ′OH or SO4 ? radicals, generated by the interaction of the initiator with silver nitrate and termination by mutual combination.  相似文献   

6.
A detailed analysis of elementary reactions of carbocationic polymerization culminated in the prediction and subsequent experimental demonstration of quasiliving polymerization. Quasiliving polymers are formed in a system provided that the process of chain termination and chain transfer to monomer are absent or reversible, i.e., the propagating ability of the chain end is maintained throughout the experiment, and the molecular weight increases in proportion to the cumulative amount of monomer added. The chain end can be active (carbocation) or dormant (reactivable polymeric olefin or cation source). Chain transfer is suppressed by keeping the monomer concentration low. Quasiliving polymerizations are maintained by continuous slow feeding of dilute monomer to a charge containing the initiating or propagating species (quasiliving polymerization technique). A comprehensive kinetic scheme has been developed that describes quasiliving polymerization in quantitative terms. Quasiliving polymerization was demonstrated experimentally in the “H2O”/BCl3/α-methylstyrene and cumyl chloride/BCl3/α-methylstyrene systems. M n versus monomer input plots are linear over wide ranges, indicating quasiliving conditions, and poly(α-methylstyrenes) with M n > 2 × 105 have been obtained, Molecular weight distributions were found progressively to narrow and dispersion ratios M w/M n to decrease.  相似文献   

7.
Isatoic anhydride (IA) alone did not initiate photopolymerization of methyl metacrylate (MMA) at 40°C when exposed to visible light for about 180 min. But IA, when used in combination with bromine (Br2) as the initiator, initiated the photopolymerization of MMA readily under the same conditions. This behavior was explained by the formation of a donor-acceptor type of complex between IA and Br2 in the presence of MMA. The polymerization was found to proceed via a free radical mechanism and the radical generation process was considered to follow an initial complexation reaction between the initiator components and monomer. The complex initiator showed nonideal kinetics for the present system (initiator exponent < 0.5) and was analyzed. The monomer exponents varied from 0.83 to 1.15 normally depending on the nature of solvent used. Initiator-dependent chain termination was significant as well as the bimolecular mode of chain termination. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Photopolymerization of methyl methacrylate in bulk and in solution at 40 °C using monochloroacetic acid –dimethyl aniline (MCAA–DMA) combination as photoinitiator was studied kinetically. The apparent activation energy was found to be 4.39 kcal/mol (18.37 kJ/mol) while the kinetic parameter kp2/kt was 1.27 × 10−2 1/mol/sec. The kinetic data indicated that polymerization followed a radical mechanism. The initiator order was found to be 0.25, indicating significant deviation from the square root dependence for normal free radical kinetics. The non‐ideality in the kinetics can be explained on the basis of significant initiator‐dependent termination through primary radicals or degradative initiator transfer. The observed monomer order was significantly less than unity (i.e. nonideal behavior) for use of carbon tetrachloride, chloroform, methylethyl ketone and acetic acid as diluents, but it was unity (i.e. ideal behavior) for use of benzene as the diluent. Solvents other than benzene contributed to enhancement of rate of polymerization by influencing the radical generation step. End‐group analysis indicated the incorporation of DMA and MCAA moieties as end‐groups in the polymers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The kinetics of radical polymerization of N-vinylcaprolactam initiated by the thermal decomposition of AIBN at 60°C in monomer solutions in benzene has been studied in a wide range of conversions. The heat of polymerization of N-vinylcaprolactam is 76.0 ± 0.9 kJ/mol; at initial conversions, the polymerization of N-vinylcaprolactam is of the first order with respect to the monomer and of the 0.5th order with respect to the initiator. The ratio of chain propagation and chain termination rate constants k p/k ter 0.5 is 0.578 l0.5/(mol s)0.5, thus suggesting a high propagation rate constant k p > 103 l/(mol s). At a high initial concentration of the monomer, the kinetic curves demonstrate a weakly pronounced gel effect, and, in the gel permeation chromatography curves of the polymers, the second high-molecular-mass mode emerges, whose intensity grows with conversion. The observed kinetic features are interpreted in terms of the diffusion control of the gel effect.  相似文献   

10.
The kinetics of the free radical photopolymerization of methyl methacrylate (MMA) initiated by azo-containing polydimethylsiloxane (PSMAI) and azobisisobutyronitrile (AIBN) was investigated. The greater polymerization rate Rp in MMA/PSMAI systems may be due to the higher value of the initiation rate Ri and the lower value of the termination rate constant kt than that in MMA/AIBN system. The reaction orders with respect to initiators PSMAI decreased with an increase in polydimethylsiloxane chain length (SCL) in PSMAI. The observed deviations in polymerization rate from rate equation could be explained in terms of primary radical termination. The photoinitiator efficiency Φ of initiators decreased with increase in SCL, while the ratio of the rate constants for chain termination and chain initiation by primary radical increased with SCL. The fraction β of primary radicals entering into termination in MMA/PSMAI systems were larger than that in MMA/AIBN system. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
In polymerization with primary radical termination, when reaction between primary radicals, which escape from solvent cage, is not negligible, a relation between chain length and polymerization rate is found regardless of tractable approximate procedures. Such a relation is applied to the kinetic data obtained in the polymerizations of methyl methacrylate (MMA) and vinyl acetate (VA) initiated by 2,2′-azobis(2,4-valeronitrile) at 50.0°C. Further, when the primary radical termination is high, an initiator efficiency can not be approximated to a ratio of the primary radicals escaping from the cage to the total primary radicals formed in the cage. In the polymerization of MMA, after the primary radicals escapes from the cage, they immediately react with the monomer. Thus, the reaction between the primary radicals is not significant. However, in the polymerization of VA, the rate of reaction between the primary radical and the monomer might be comparable to the rate of reaction between the primary radicals when the initiator concentration is quite high.  相似文献   

12.
The aqueous polymerization of MMA was studied kinetically at 40° C using low concentrations of Py-SO2 complex as initiator. For [Py-SO2] < 2 × 10?2 mol/L, Rp ∞ [PY-SO2]0.5 [M]1.5, and for [Py-SO2] > 2 × 10?2 mol/L, Rp ∞ [Py-SO2]0,0[M]1.08. Polymerization is considered to proceed by a radical mechanism. The radical generation or the initiation step is believed to proceed through equilibrium complexation between the Py-SO2 complex and monomer molecules. For [Py-SO2] < 2 × 10?2 mol/L, the polymerization is characterized by bimolecular termination. Above this [Py-SO2], chain termination by a degradative initiator transfer process assumes prominence.  相似文献   

13.
Vinyl acetate was polymerized at high initiation rate with 2,2′-azobis(2,4-dimethyl valeronitrile) as initiator at 50°C. In this polymerization, the power dependence of polymerization rate on the initiation rate is smaller than at lower concentration of monomer. This dependence was kinetically analyzed at each given concentration of monomer. Average degree of polymerization of polymer formed depends on the concentration of initiator. This dependence was explained by considering chain and primary radical terminations and transfer to monomer of polymer radical, and the initiator efficiency (=0.503) was deduced. It was found that the chain termination is inversely proportional to solvent viscosity, but the primary radical termination is not inversely proportional to solvent viscosity. Further, the value of the primary radical termination rate constant (=1.4 × 109l./mole-sec) was estimated.  相似文献   

14.
Three 14C-labeled benzoin methyl ether (α-methoxy-α-phenylacetophenone) derivatives were utilized as photoinitiators in the polymerization of methyl methacrylate (MMA) and methyl acrylate (MA). The results of polymer end-group analysis are in accord with a mechanism of benzoin ether photocleavage into initiator radicals and dispute earlier labeling studies which were interpreted as evidence for copolymerization of excited-state benzoin ethers with reactive monomers. In MMA polymerization, the results indicate a preference for termination by disproportionation (~60%) and provide evidence for primary radical termination at 0.041M photoinitiator (optically dense solutions) in neat MMA. Evidence for chain branching by initiator radical hydrogen abstraction from poly(methyl acrylate) (PMA) is also presented. The benzoyl and α-methoxybenzyl radicals, produced on photolysis of benzoin methyl ether, appear to be equally effective in both initiation and hydrogen-abstraction processes. Quantum yields at 366 and 313 nm indicate the absence of a wavelength effect.  相似文献   

15.
A new chain transfer agent, ethyl 2-[1-(1-n-butoxyethylperoxy) ethyl] propenoate (EBEPEP) was used in the free radical polymerization of methyl methacrylate (MMA), styrene (St), and butyl acrylate (BA) to produce end-functional polymers by a radical addition–substitution–fragmentation mechanism. The chain transfer constants (Ctr) for EBEPEP in the three monomers polymerization at 60°C were determined from measurements of the degrees of polymerization. The Ctr were determined to be 0.086, 0.91, and 0.63 in MMA, St, and BA, respectively. EBEPEP behaves nearly as an “azeotropic” transfer agent for styrene at 60°C. The activation energy, Eatr, for the chain transfer reaction of EBEPEP with PMMA radicals was determined to be 29.5 kJ/mol. Thermal stability of peroxyketal EBEPEP in the polymerization medium was estimated from the DSC measurements of the activation energy, Eath = 133.5 kJ/mol, and the rate constants, kth, of the thermolysis to various temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
The photopolymerization of methyl methacrylate (MMA) in visible light was studied at 40°C using the acridone-bromine (acridone-Br2) combination as the photoinitiator. The polymerization was found to proceed via a free radical mechanism, and the radical generation process was considered to follow an initial complexation reaction between monomer and each initiator component (acridone and Br2), followed by further interaction between these two initiator-monomer complexes. Kinetic data indicated a lower-order dependence of R on initiator concentrations (initiator exponent < 0.5). Initiator-dependent chain termination was signifi-cant along with the usual bimolecular mode of chain termination. The monomer exponent varied from about 1.00 to 2.00, depending on the nature of solvents used. The nonidealities in this system were also analyzed.  相似文献   

17.
The photopolymerization of MMA in visible light was studied at 45°C using IC13 as the photoinitiator. The initiator exponent was found to be 0.16 and the monomer exponent varied between 1.0 to 1.50, depending on the nature of the solvent. Analysis of the data revealed that the polymerization was induced by a free radical mechanism. Nonideality of the kinetics was explained on the basis of 1) Monomer-dependent chain initiation and 2) Initiator-dependent chain termination via degradative initiator transfer.  相似文献   

18.
Photopolymerization of MMA with the use of H2O2 as the photoinitiator under visible light at 30°C was studied. Kinetic features in bulk monomer and in the presence of different diluents differ significantly. Usual free radical kinetics with square-root dependence of rate on initiator, indicating bimolecular termination of chain radicals, were observed for bulk polymerization. On dilution with various solvents polymerization was found to be retarded to different (usual and more than usual) extents, the observed monomer exponent value being much higher than unity in many cases. This deviation from normal kinetics has been interpreted in terms of the predominance of degradative initiator transfer in the diluted systems.  相似文献   

19.
Polymerization of methyl methacrylate (MMA) was kinetically studied under photo condition using near UV visible light at 40°C and employing morpholine (MOR)–chlorine (Cl2) charge transfer (C-T) complex as the photoinitiator. The rate of polymerization (Rp) was dependent on morpholine/chlorine mole ratio; the 1 : 2 (MOR–Cl2) C-T complex acted as the latent initiator complex, C, which underwent further complexation with the monomer molecules to give the actual initiator complex, I. Using 1 : 2 (MOR-Cl2) C-T complex as the latent initiator, the initiator exponent evaluated for bulk photopolymerization of MMA was 0.071 and monomer exponent determined from studies of photopolymerization in benzene diluted system was 1.10. Benzoquinone behaved as a strong inhibitor and the polymers tested positive for the incorporation of chlorine atom end groups. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by low (≪0.5) initiator exponent and a monomer exponent of greater than unity were explained in terms of primary radical termination effect. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1681–1687, 1997  相似文献   

20.
The 1,1‐diphenylethene (DPE) controlled radical polymerization of methyl methacrylate was performed at 80 °C by using AIBN as an initiator and DPE as a control agent. It was found that the molecular weight of polymer remained constant with monomer conversion throughout the polymerization regardless of the amounts of DPE and initiator in formulation. To understand the result of constant molecular weight of living polymers in DPE controlled radical polymerization, a living kinetic model was established in this research to evaluate all the rate constants involved in the DPE mechanism. The rate constant k2, corresponding to the reactivation reaction of the DPE capped dormant chains, was found to be very small at 80 °C (1 × 10?5 s?1), that accounted for the result of constant molecular weight of polymers throughout the polymerization, analogous to a traditional free radical polymerization system that polymer chains were terminated by chain transfer. The polydispersity index (PDI) of living polymers was well controlled <1.5. The low PDI of obtained living polymers was due to the fact that the rate of growing chains capped by DPE was comparable with the rate of propagation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号