首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymeric ultraviolet absorbers have been synthesized by free-radical solution copolymerization in cyclohexanone at 70°C of methyl methacrylate and 2-hydroxy-4-acryloyloxybenzophenone at low (below 10%) conversion of monomers. The composition of the copolymers was determined by UV, IR, and NMR. The reactivity ratios were determined and the effect of copolymer composition on viscosity was studied. The copolymers were also studied by TGA and DSC. The latter showed the effect of copolymer composition on the glass-transition temperature.  相似文献   

2.
Blends of two or more ethylene–styrene (ES) copolymers that differed primarily in the comonomer composition of the copolymers were studied. Available thermodynamic models for copolymer–copolymer blends were utilized to determine the criteria for miscibility between two ES copolymers differing in styrene content and also between ES copolymers and the respective homopolymers, polystyrene and linear polyethylene. Model estimations were compared with experimental observations based primarily on melt‐blended ES/ES systems, particularly via the analysis of the glass‐transition (Tg ) behavior from differential scanning calorimetry (DSC) and solid‐state dynamic mechanical spectroscopy. The critical comonomer difference in the styrene content at which phase separation occurred was estimated to be about 10 wt % for ES copolymers with a molecular weight of about 105 and was in general agreement with the experimental observations. The range of ES copolymers that could be produced by the variation of the comonomer content allowed the study of blends with amorphous and semicrystalline components. Crystallinity differences for the blends, as determined by DSC, appeared to be related to the overlapping of the Tg of the amorphous component with the melting range of the semicrystalline component and/or the reduction in the mobility of the amorphous phase due to the presence of the higher Tg of the amorphous blend component. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2976–2987, 2000  相似文献   

3.
Radiation-induced copolymerization of acrylonitrile with methyl acrylate was carried out in aqueous medium at room temperature. Different compositions of the copolymer were prepared and characterized by IR, 1H-NMR, thermal, and dielectric studies. NMR spectroscopy was used to determine the composition and stereochemistry of the copolymer. Glass transition temperature values (Tg ) were determined by DSC. Dielectric studies were carried out to understand the segmental motions and the effect of composition on dielectric loss.  相似文献   

4.
Two types of biodegradable poly(ε-caprolactone (CLo))-co-poly(ε-caprolactam (CLa)) copolymers were prepared by catalyzed hydrolytic ring-opening polymerization. For the first type of materials, the respective cyclic comonomers were added simultaneously in the reaction medium leading to the formation of copolymers having a random distribution of co-units within the polyesteramide sequence, as evidenced by 1H and 13C NMR. For the second type of copolymers, the cyclic comonomers were added sequentially in the reaction medium yielding diblock polyesteramides, again evidenced by NMR. The thermal and thermo-mechanical properties of the copolymers were investigated by DSC and DMA and correlated with the copolymer topology and composition. The copolymers were characterized by a storage modulus and α transition temperature intermediate to the modulus and Tg of the corresponding homopolymers. The chemical composition and molecular weight of the copolymers proved to have only a limited effect on the thermo-mechanical properties of the materials. The hydrolytic degradation of random copolymers was studied in a phosphate buffer at 60 °C and discussed in terms of chemical composition and molecular weight of the copolymers.  相似文献   

5.
In this work, poly(4‐vinylbenzylboronic acid‐co‐4(5)‐vinylimidazole) (poly(4‐VBBA‐co‐4‐Vim)) copolymers were synthesized by free‐radical copolymerization of the monomers 4‐VBBA and 4‐Vim at various monomer feed ratios. The copolymers were characterized by 1H MAS NMR and 11B MQ‐MAS NMR methods and the copolymer composition was determined via elemental analysis. The membrane properties of these copolymers were investigated after doping with phosphoric acid at several stoichiometric ratios. The proton exchange reaction between acid and heterocycle is confirmed by FTIR. Thermal properties of the samples were investigated via thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The morphology of the copolymers was characterized by x‐ray diffraction, XRD. The temperature dependence of proton conductivities of the samples was investigated by means of impedance spectroscopy. Proton conductivity of the copolymers increased with the doping ratio and reached to 0.0027 S/cm for poly(4‐VBBA‐co‐4‐Vim)/2H3PO4 in the anhydrous state. The boron coordination in the copolymer was determined by 11B MQ‐MAS experiment and the coexistence of three and four coordinated boron sites was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1267–1274, 2009  相似文献   

6.
Forced ideal carbocationic copolymerization of isobutylene/styrene systems has been achieved by continuous addition of mixed monomer feeds to 2-chloro-2,4,4-trimethylpentane/TiCl4 in n-hexane/methylene chloride charge by keeping the input rate equal to the overall rate of copolymerization. The composition of the copolymers was identical to that of the feeds over the entire monomer concentration range. The number-average molecular weight of the copolymers increased almost linearly with the amount of consumed monomers at higher isobutylene concentrations in the feed. The molecular weight increase was less pronounced at higher styrene concentration because more methylene chloride had to be used in the solvent system to keep the copolymer in solution. The micro-structure of the copolymers is uniform as determined by gel permeation chromatography (UV plus RI) and 13C-NMR spectroscopy According to these studies, true copolymers have formed. The probability of triads in the copolymer has been determined.  相似文献   

7.
A series of graft copolymers were synthesized based on ethylene‐co‐m,p‐methylstyrene (EMS) (backbone copolymer), ethylene‐1‐hexene‐m,p‐methylstyrene (EHMS) (backbone terpolymer), and polyethylene glycol monomethyl ethers (PEGM) (grafts) in this study. The PEGMs with molecular weights of 750 and 2000 were used. The chemical composition of the graft copolymers was analyzed by NMR and DSC measurements. The graft copolymers exhibited a phase‐separated morphology with the backbone and the methoxy polyethylene glycol (MPEG) grafts forming separate crystalline phases. The MPEG phase had a melting temperature lower than the corresponding MPEG homopolymer, as determined by DSC. The melting point of the crystalline phase formed by the EMS and EHMS main chains was lower than that of pure polymer backbone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The free‐radical copolymerization of N‐phenylmaleimide (N‐PhMI) with acrylic acid was studied in the range of 25–75 mol % in the feed. The interactions of these copolymers with Cu(II) and Co(II) ions were investigated as a function of the pH and copolymer composition by the use of the ultrafiltration technique. The maximum retention capacity of the copolymers for Co(II) and Cu(II) ions varied from 200 to 250 mg/g and from 210 to 300 mg/g, respectively. The copolymers and polymer–metal complexes of divalent transition‐metal ions were characterized by elemental analysis, Fourier transform infrared, 1H NMR spectroscopy, and cyclic voltammetry. The thermal behavior was investigated with differential scanning calorimetry (DSC) and thermogravimetry (TG). The TG and DSC measurements showed an increase in the glass‐transition temperature (Tg) and the thermal stability with an increase in the N‐PhMI concentration in the copolymers. Tg of poly(N‐PhMI‐co‐AA) with copolymer composition 46.5:53.5 mol % was found at 251 °C, and it decreased when the complexes of Co(II) and Cu(II) at pHs 3–7 were formed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4933–4941, 2005  相似文献   

9.
吴一弦 《高分子科学》2010,28(4):475-482
<正>A series of butadiene-isoprene copolymers(BIR) with various compositions were synthesized with a neodymiumbased catalyst system.The microstructure,composition and sequence of copolymers were characterized by FTIR and ~(13)C-NMR spectroscopy.The crystallization behavior of the BIR copolymers was investigated by DSC analysis.The results demonstrate that the content of cis-1,4 configuration in both butadiene(Bd) and isoprene(Ip) units are around 98%when Bd content in feed(f_(Bd)) covering the range from 55.7 mol%to 96.0 mol%.The reactivity ratios of Bd and Ip were determined to be 1.40 and 0.48 respectively.The random copolymers of Bd and Ip show only one glass transition temperature(T_g) from -107.4℃to -80.5℃,which is dependent on the composition and fits nicely with Fox equation.The sequence distribution followed the first-order Markov statistical model.It is found that the copolymer chains with higher Bd content contain longer polybutadiene(PBd) segments,and the sequence length of PBd segments(N_(Bd)) exhibits great influence on the crystallization behavior of the copolymer.The copolymers with N_(Bd)≥11.8 could crystallize at low temperatures(-71℃to-43℃).The crystallization temperature and enthalpy values decreased gradually with decreasing N_(Nd).The copolymers with N_(Bd)≤7.9 are amorphous even at very low temperatures(0℃to-150℃) due to the short PBd segments.  相似文献   

10.
Abstract

4‐(3′,4′‐Dimethoxycinnamoyl)phenyl acrylate (DMCPA) containing pendant chalcone moiety was copolymerized with methyl methacrylate (MMA) by radical polymerization in ethyl methyl ketone at 70°C under a nitrogen atmosphere using benzoyl peroxide (BPO) as a free radical initiator. The prepared polymer was characterized by UV, FT‐IR, 1H‐NMR, and 13C‐NMR spectra. The composition of the copolymer was determined using 1H‐NMR analysis. The monomer reactivity ratios of copolymerization were determined using conventional linearization methods such as Fineman–Ross (r 1 = 0.26 and r 2 = 0.61), Kelen–Tudos (r 1 = 0.26 and r 2 = 0.61), and Ext. Kelen–Tudos (r 1 = 0.23 and r 2 = 0.59), and a non‐linear error‐in‐variables model (EVM) method using the computer program RREVM (r 1 = 0.2541 and r 2 = 0.6094). The molecular weights (M w and M n) of the copolymers were determined by gel permeation chromatography. Thermogravimetric analysis of the polymers in air reveals that the stability of the copolymers decreases with an increase in the mole fraction of MMA in the copolymers. The solubility of the polymers was tested in various polar and non‐polar solvents. The glass transition temperature of the copolymers was determined as a function of copolymer composition. The copolymers were sensitive to UV light and became crosslinked after irradiation with 254 nm light.  相似文献   

11.
 The phase transition of aqueous solutions of poly(N,N-diethylacrylamide-co-acrylic acid) (DEAAm–AA) is studied by differential scanning calorimetry (DSC) and UV–vis spectrophotometry. The copolymer aqueous solutions are shown to have well-defined lower critical solution temperatures (LCSTs). The LCST values obtained from the maximum of the first derivatives of the DSC and optical transition curves agree well. DSC can be used to measure the phase-transition temperature of more dilute polymer solutions. On increasing the AA composition in the copolymers, the LCST values of the copolymer increase, then decrease at higher AA composition. For the aqueous solution of the copolymers, the transition curve obtained by the spectrophotometric method is highly wavelength dependent. The LCST values are found to be concentration-dependent. The changes in the heat of the phase transition of the copolymer solutions measured from DSC are lower than that of the homopolymer PDEAAm solution. This is consistent with the suggestion that the polymer chains of the copolymers collapsed only partially at temperatures above the LCST. The added salt (sodium chloride) decreases the transition temperature of the polymer solution. Received: 14 November 2000 Accepted: 15 January 2001  相似文献   

12.
2-(Trimethylsiloxy)butadiene (TMSBD) and 2-(tert-butyldimethylsiloxy)butadiene (TBMSBD) were copolymerized with styrene (St) and methyl methacrylate (MMA) under free-radical conditions. The obtained polymers were found to contain reactive silyl enol ether groups in a ratio identical to the TMSBD or TBMSBD molar fraction in the copolymer. All investigated samples displayed only 1,4- and 3,4-microstructures. The influence of several experimental factors on the yields, rates of polymerization, microstructures, and copolymer compositions were examined. Monomer reactivity ratios r1 and r2 at 60°C were determined from copolymer composition curves at low conversions. The homopolymerization of TBMSBD was also investigated and results were compared with those previously obtained for TMSBD. A slight increase in rates was observed and was rationalized on the basis of the higher viscosity resulting from the structural change in the monomer. Thermal stabilities of the synthesized polymers were investigated by TGA and their glass transition temperatures were determined by DSC. All measurements are compatible with a possible use of TMSBD and TBMSBD copolymers as reactive polymers. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Poly(1,4-dioxan-2-one-co-trimethylene carbonate), P(DON-co-TMC), copolymers with different compositions were synthesized by copolymerizations of 1,4-dioxan-2-one (DON) and trimethylene carbonate (TMC) at 120°C in the presence of Sn(Oct)2. Their structures and compositions were determined with FT-IR and 1H-NMR spectroscopies. The intrinsic viscosities of copolymers increased with the increase of the TMC fraction in feed. The DSC results of copolymers showed that the glass transition temperatures (Tgs) of copolymers are lower than those of homopolymers. Most copolymers are amorphous except for one with a high DON composition. The hydrophilicity of the copolymers is in proportion with the DON molar fraction in the copolymers. It was found that the Levonorgestrel (LNG) release rate is dependent of the composition and flexibility of polymer chains. The fastest one is the copolymer with nearly a equivalent fraction of DON to TMC. Among copolymers with other compositions, a higher DON fraction would be favorable to the release of LNG. All measurements demonstrate an almost constant release rate in the period of 1 month. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1301–1307, 1998  相似文献   

14.
Poly (styrene-co-furfuryl methacrylate) networks were prepared by the Diels-Alder (D-A) reaction in solution at 25 °C between the linear copolymer and bismaleimide (BM). The resultant crosslinked polymers were swollen to equilibrium in toluene at 25 °C and swelling properties were studied by gravimetric and dimensional measurements. The swelling behaviour of these organogels depended on the composition of the copolymer and the concentration of BM used. Shear and Young’s moduli and the effective crosslinking densities (νe) were determined by compression (stress)-strain measurements. The theoretical crosslinking density was higher than the νe for all the crosslinked copolymers. An endothermic peak without Tg was observed on the DSC curve on heating the dry crosslinked polymer. On reheating a Tg at ≈98 °C was found, which is attributed to presence of linear copolymer produced by the retro D-A reaction in the first heating. The thermal stability of a crosslinked copolymer under nitrogen and air showed differences with the stability of the linear copolymer. The increase in viscosity of the solution during the D-A reaction was followed with time, for initial linear copolymers of different molecular weights. It was found that onset of gelation increased to longer reaction times the lower the molecular weight of copolymer.  相似文献   

15.
Isomeric homopolymers and random copolyesters based on sebacic acid and isomeric hexanediols were synthesized by condensation techniques and characterized by NMR, GPC, intrinsic viscosity, and DSC. Among the homopolymers, only the polyester derived from the linear 1,6-hexanediol was found to be crystalline. Typical melting points were 65–70°C, depending on molecular weight, and a Tg of ?62°C was measured on a high molecular weight sample. Other isomeric homopolymers derived from the branched diols 2-methyl-2-ethyl-1,3-propanediol and 2,5-hexanediol were amorphous tacky fluids with glass temperatures of ?69 and ?66°C, respectively. In the case of the random copolymers, NMR analysis was particularly useful in determining the copolymer composition or the diol isomer ratio. DSC data indicated that all the random copolymers containing the linear 1,6-diol were crystallizable and their melting points depended on copolymer composition. The heat of fusion per repeat unit of poly(hexamethylene sebacate) was found to be 32 cal/g from measurements of the molecular weight dependence of the melting point.  相似文献   

16.
The glass transition temperatures (Tg) of styrene‐butyl acrylate copolymers obtained by free radical polymerization in bulk, and in 3 mol·L–1 benzene and benzonitrile solutions, have been measured using differential scanning calorimetry (DSC) to verify the bootstrap effect previously reported for this system. The corresponding values have been correlated with copolymer composition and microstructure using the Johnston equation.  相似文献   

17.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

18.
A series of fluorene‐based copolymers containing hole blocking/electron transporting diphenyloxadiazole units were synthesized by means of Suzuki‐Miyaura coupling of selected aromatic dibromo‐ and diboronato‐ derivatives catalyzed with a Pd(PPh3)4 catalyst. All of the copolymers with various composition of main‐chain units were characterized by SEC chromatography, NMR, UV–vis, fluorescence and IR spectroscopy, and DSC. The emission stability of fluorene copolymers was improved by the replacement of alkyl groups on the C‐9 carbon of fluorene with aryl groups or by the incorporation of anthracene units into the copolymer main chain. A comparison of luminescence properties of pristine and annealed thin layers of studied copolymers was performed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4532–4546, 2009  相似文献   

19.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 2-phenyl-1,1-dicyanoethylenes, RC6H3CH═C(CN)2 (where R is 2-bromo,3-bromo, 3-chloro, 2,3-dichloro, 2-chloro-6-fluoro, 2,6-difluoro, 3,4-difluoro, and 3,5-difluoro) and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR, GPC, DSC, and TGA. High T g of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 200–800°C range.  相似文献   

20.
An (AB)n-type multiblock copolymer containing alternating poly(l-lactide) (PLLA) and poly(dimethyl siloxane) (PDMS) segments was synthesized by chain extension of hydroxyltelechelic PLLA-PDMS-PLLA triblock copolymers, which were prepared by the ring-opening polymerization of l-lactide initiated by α,ω-functionalized hydroxyl poly(dimethyl siloxane), using 1,6-hexamethylene diisocyanate as a chain extender. The triblock and the multiblock copolymers were characterized by FT-IR, 1H NMR and GPC. From the results of thermal analysis, two glass transition temperatures which were measured by DSC showed the occurrence of phase separation phenomena in the triblock and multiblock copolymers because of the difference of solubility parameters between PLLA and PDMS segments. The effect of the chemical composition of the triblock copolymers, including the Mw and the constitutive segment chain length of the macrodiol, on the development of the Mw of the multiblock was discussed based on diffusion effect. Furthermore, the consumption of the isocyanate groups was determined by FT-IR to investigate the dependence of the reaction kinetics of the urethane formation on the chemical composition of the triblock copolymer. The results reveal that the order of the chain extension reaction depended on the Mw of the triblock copolymer: a second order reaction was transformed into a third reaction as the Mw of the triblock copolymer increased from 7000 to 25,000 (g/mol) perhaps because of the inhibition of the formation of an active complex involved in the catalyzed-urethane reaction by the polymer chain aggregation. Finally, the mechanical properties of the multiblock copolymers demonstrated that the introduction of the extremely flexible PDMS segment substantially improved the elongation at breakage, and the tensile strength and the tensile modulus declined due to the intrinsic elasticity of such segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号