首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Graft copolymerization of methyl methacrylate on cellulosic materials of various carbonyl and aldehyde contents with the use of a ceric salt as an initiator was studied. It was found that the concentration of the ceric salt which gives the maximum per cent grafting is in good agreement with the equivalent of total carbonyl content in the cellulosic material, and the number of grafted chains in copolymers is roughly proportional to it. However, the molar ratio of the number of grafted chains to total carbonyl content is quite small, being approximately 1:50, and the graft copolymerization can be explained kinetically on the assumption that the number of radicals produced on cellulose by the ceric salt leading to branching is very much smaller than the number of radicals destroyed by the ceric salt, and growing radicals can be stabilized by the termination reaction with the ceric salt or with a cellulose radical. Although both aldehyde and carbonyl groups contribute to the formation of grafted chains, the former are effective mainly at low concentrations of the ceric salt; both groups participate in the production of graft copolymers showing the maximum per cent grafting.  相似文献   

2.
The present research work deals with the surface modification of natural cellulosic polymers to develop novel materials for different applications. Natural cellulose-graft-poly (methyl acrylate) copolymers were prepared using the free radical induced graft copolymerization technique. Different reaction parameters were optimized to achieve the highest percentage of grafting of natural cellulose-graft-poly (methyl acrylate) copolymers. The natural cellulose graft copolymers were characterized by FT-IR, SEM, TGA, and physicochemical studies. For the evaluation of swelling and the physicochemical mechanism, swelling and chemical resistance studies were carried out in different solvents as well as chemicals.  相似文献   

3.
The kinetics of melt grafting acrylic acid(AA)onto linear low density polyethylene(LLDPE)by using reactive extrusion was investigated.The polymeric peroxides(POOP and POOH)generated by electron beam irradiation were used to initiate the graft reaction.The samples taken out from the barrel at five ports along screw axis were analyzed by FTIR.The spectra show that both the graft copolymerization and homopolymerization proceed in two stages:the graft degree(or mass of homopolymer)increases linearly with the reaction time in the initial stage,and then gradually in the second stage.The rate of graft copolymerization R_g is always faster than that of homopolymerization R_h in the present system and the activation energy is 131 kJ·mol~(-1) for graft copolymerization and 127 kJ·mol~(-1) for homopolymeirzation.These results were interpreted in terms of solubility and diffusion of monomer,as well as the reactivity and the concentration of reactive species. The relationships between reaction rate and monomer concentration and peroxide concentration were found to he:R_g ∝ [M]~(1.46)[POOP+POOH]~(0.53) and R_h ∝[M]~(1.08)[POOH]~(0.51),which indicate that the addition of monomer to polymeric radicals is a slow step for the graft copolymerization.  相似文献   

4.
Graft copolymerization reactions of fibrous cellulose with vinyl monomers were initiated at free radical sites formed on the cellulose molecule by interaction with high-energy radiation, by reaction with Ce4+ ions in acidic solution, or by H abstraction by ·OH radicals fromed by reaction of Fe2+ ions with HLOz in aqueous solution. The effects of experimental conditions on the nature, half-lives, location of these free radical sites on the cellulose molecule, and on the copolymerization reactions were studied by the use of electron spin resonance spectroscopy. The molecular weights of the grafted polymers varied over a range from about 3 × 104 to 1 × 106. The distributions of the grafted polymers within the fibrous cellulosic structure were determined. Some of the changes in physical properties of the cellulose graft copolymers, as compared with cellulose, were decreased permanent set, development of thermoplasticity, decreased stiffness, increased rot resistance, and increased abrasion resistance.  相似文献   

5.
Graiver  D.  Decker  G.T.  Kim  Y.  Hamilton  F.J.  Harwood  H.J. 《Silicon Chemistry》2002,1(2):107-120
A convenient new process to make silicone/organic block and graft copolymers has been recently demonstrated. This dual copolymerization process combines conventional condensation polymerization of the siloxane segments with free radical polymerization of the organic vinyl polymer segments. The copolymerization process is relatively simple and economical compared with other copolymerization techniques as it uses commonly available starting materials and available process equipment. Silicone segments containing alkene side chains or end-groups are prepared in the usual way by polycondensation using an acid or base catalyst. The double bonds of the alkene groups are oxidized to carbonyls which are then used to initiate vinyl monomer polymerization and link the siloxane with the vinyl segments. This initiation step is based on a redox system of copper(II) salts which generates free radicals on the alpha carbons next to the carbonyl groups. This copolymerization process is relatively fast and proceeds at high yields.  相似文献   

6.
Abstract

Among the various types of copolymerization, graft copolym-erization has attracted considerable attention among applied polymer chemists. Graft copolymerization is a process of copolymerization of one kind of monomer in its polymeric state with another polymer which may be either synthetic or natural. So a graft copolymer is a high polymer whose molecule consists of two or more polymeric parts of different composition, chemically united together. Graft copolymerization onto textile fibers is a challenging field of research with unlimited future prospects [1-10]. This is attractive to chemists as a means of modifying macromolecules since, in general, degradation is minimized. The desirable properties of the polymer are retained, and copolymerization Drovides additional properties throuerh the added polymer.  相似文献   

7.
Functional materials obtained from cellulosic biofibers have gained attention due to the growing demand for them in the field of wastewater remediation. In view of the technological significance of functionalized cellulosic biofibers in wastewater treatment, the present study is a green approach to functionalized cellulosic fibers through graft copolymerization under microwave irradiation. The grafted cellulosic polymers were subsequently subjected to heavy metal ion adsorption studies in order to assess their application in wastewater remediation. The effects of pH, contact time, temperature, and metal ion concentration were studied in batchwise adsorption experiments. The Langmuir, Freundlich, and Tempkin models were used to show the adsorption isotherms. The maximum monolayer capacities, q m. calculated using the Langmuir isotherm for Zn2+, Cd2+, and Pb2+ were found to be 37.79, 69.68, and 96.81 mg/g respectively. The thermodynamic parameter ΔH° and ΔG° values for metal ion adsorption on functionalized cellulosic fibers showed that adsorption process was spontaneous as well as exothermic in nature.  相似文献   

8.
聚对苯二甲酸乙二醇酯纤维在空气氛中经γ-射线辐照生成大分子过氧化物,通过联氨-铜离子催化分解生成大分子自由基,在丙烯酸水溶液中进行接枝反应,丙烯酸的接枝率不受介质中氧的影响。根据接枝条件,有一个对接枝最有利的联氨浓度范围。在铜离子浓度0—2.5×10~(-3)克分子/升的实验范围内,接枝率随铜离子浓度而增加。  相似文献   

9.
The graft copolymerization of undecylenic acid onto acrylonitrile–butadiene–styrene terpolymer (ABS) was initiated with benzoyl peroxide (BPO) in a 1,2‐dichloroethane solution. IR spectra confirmed that undecylenic acid was successfully grafted onto the ABS backbone. The influence of the concentrations of undecylenic acid, BPO, and ABS on the graft copolymerization was studied. A reaction mechanism was proposed: the grafting most likely took place through the addition of poly(undecylenic acid) radicals to the double bond of the butadiene region of ABS. A monomer cage effect on the graft reaction was observed to depend on the 1.5 power of the monomer concentration from the experimental results of the initial rate of graft copolymerization. The initial rate of graft copolymerization was written as Rp = 1.77 × 10−3[P][I2][M]2.5/([P]+2.75[M]2.5)2. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 486–494, 2001  相似文献   

10.
ABSTRACT

A novel redox system, potassium diperiodatonickelate [Ni (IV)]‐chitosan, was employed to initiate the graft copolymerization of methyl acrylate (MA) onto chitosan in alkali aqueous solution. The effects of reaction variables such as monomer concentration, initiator concentration, reaction time, pH and temperature were determined. By means of a series of copolymerization, the grafting conditions were optimized. The maximum grafting percentage obtained was 404.1% when 0.3 g chitosan was copolymerized with 1.8 mL monomer at 35°C for 5 hours with [Ni (IV)]=9.4×10?4 M and the total volume was 20 mL. Ni (IV)-chitosan system is found to be an efficient redox initiator for this graft copolymerization. A single electron transfer mechanism is proposed to explain the formation of radicals and the initiation. The grafted copolymers were characterized by IR and X-ray diffraction diagrams. The thermal stability of chitosan and chitosan-g-PMA was studied by thermogravimetric analysis (TGA).  相似文献   

11.
The decay behavior of cellulose radicals produced by photo-irradiation at room temperature and the characteristics of photo-irradiated cellulose samples to initiate graft copolymerization of methyl methacrylate (MMA) were investigated. ESR spectra of such untreated, swollen, oximated, and ferric ion-sensitized samples irradiated at room temperature were constructed mainly of a single absorption line with a line width of 20 to 22 gauss and a g value of 2.003, and it is surely conceivable that the radicals showing a singlet spectrum should agree with those of alkoxy end produced at either the C1 or C4 position of the glucose unit by the scission of glucosidic bonds. The decay of radicals was accelerated by contact of various solvents with the samples, the activity decreasing in the order, water ≈ methanol ? acetone > dioxane. On the other hand, the decay of radicals by vinyl monomers became smaller in the order, methacrylic acid > MMA ≈ styrene. Graft copolymerization of MMA by a photo-irradiated sample was effectively initiated with the use of a certain amount of water or methanol, but not with acetone and dioxane. As no initiation can occur with the unirradiated sample, it is concluded that the initiation of graft copolymerization on the photo-irradiated sample is attributable to cellulose radicals showing a singlet spectrum which are formed in photo-irradiation at room temperature.  相似文献   

12.
Surface modification of a natural cellulosic polymer system is required to improve the physicochemical properties of the fibers to be used as reinforcement for green composite applications. Surface modification through graft copolymerization improves the existing properties of the cellulosic fibers for a number of applications. Therefore, in the present study, an attempt was made to synthesize butyl acrylate (BA)-g-Saccaharum cilliare fibers using a redox initiator. Graft copolymers were characterized through FT-IR/SEM/TGA/DTA/DTG techniques, and the effect of grafting percentage on the water absorption properties of raw as well as grafted fibers was also investigated.  相似文献   

13.
Graft copolymers were prepared using the RAFT process via a Z-group approach, where xanthate esters were formed directly on a cellulosic substrate. Grafting of vinyl acetate onto the modified cellulosic materials was then carried out via the reversible addition fragmentation chain transfer (RAFT) process. The xanthate RAFT agents on the backbone of the cellulosic materials were identified by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectroscopy (UV-vis). The number average molar masses of the graft copolymers were determined using size exclusion chromatography (SEC) and further characterization was conducted via liquid adsorption chromatography (LAC). The chromatographic results showed that the modified cellulosic materials were successfully grafted with polyvinyl acetate in a controlled manner. Grafted polyvinyl acetate (on the surface) and nongrafted polyvinyl acetate (in the solution) have almost the same molar mass and polydispersity index.  相似文献   

14.
张涛  侯小东  曹阿民 《有机化学》2006,26(9):1328-1334
γ-射线辐射高分子材料表面接枝共聚合是一种绿色的、重要的有机生物材料合成制备方法. 综述了γ-射线辐射接枝共聚反应的原理、特点, 阐述了预辐射接枝共聚和共辐射接枝共聚的方法, 介绍了当前γ-射线辐射接枝共聚反应在改善有机生物医用材料的表面亲水性、生物相容性等方面的应用. 对辐射接枝共聚合制备功能药物载体研究进行了简要介绍.  相似文献   

15.
在紫外光作用下,二苯甲酮、蒽醌和安息香能通过夺氢反应使异戊二烯在四氟乙烯-丙烯共聚物中接枝,接枝反应按三重态自由基引发机理进行,接枝率随光照时间的增长而增加,但不会超过40%。和异戊二烯的自由基聚合反应不一样,接枝物中聚异戊二烯接枝链的微结构以3,4-和1,2-聚合为主,而前者以1,4-聚合为主。Ce+4及Fe+2-H2O2等氧化还原体系对该接枝反应不产生作用.极性溶剂四氢呋喃的加入,对接枝链微结构的影响很小。  相似文献   

16.
二过碘酸合银(II)氧化还原引发丙烯酸甲酯在尼龙1010上接枝共聚合反应的研究刘盈海刘卫宏赵敏孟劲功(河北大学化学系保定071002)关键词二过碘酸合银(II)钾,尼龙1010,氧化还原引发,丙烯酸甲酯,接枝共聚目前Ce(IV)被认为是一种十分...  相似文献   

17.
The results of studies into development of methods for synthesizing new modified fluoropolymer-containing composite materials were summarized. The issues covered include: new modes and initiation methods of graft polymerization of fluoromonomers onto the surface of items of various nature and dispersity without homopolymer formation; nature of the surface active centers of the modified material and how it affects the kinetics and mechanism of both postradiation graft polymerization of tetrafluoroethylene and the subsequent chemical modification of the graft-polymer; major mechanisms and methods of blocking the terminal radicals of the grafted fluoropolymer layer, including those based on reaction with some perfluoroolefins at their double bond, yielding stable long-lived radicals, which allows controlling the physicochemical properties of composite materials; and new methods of synthesis of selective biocompatible sorbents with specific adsorption properties. Accelerating effect of oxygen on polymerization was analyzed, and the phenomenon of ozone initiation of low-temperature polymerization of tetrafluoroethylene was revealed and examined; a new class of high-performance polymerization initiators, namely, perflouroolefin ozonides, was synthesized; and new methods of initiation of polymerization and copolymerization of fluoromonomers, as well as of some other monomers with their use were developed.  相似文献   

18.
Hydrophobically modified water-soluble ion-containing cellulosic polymer possessing intra-or intermolecular modes of hydrophobic associations has been recently the object of our research[1-4]. Based on the preparation of the surface-active monomer, dimethyloctyl (2-methacryloxyethyl)ammonium bromide (DMOA), new cellulosic graft terpolymers (NCGT) have been synthesized by grafting acrylamide (AM) and DMOA onto carboxymethyl cellulose (CMC) using potassium persulfate and dimethylaminoethyl methacrylate as the initiating system, and characterized by FTIR, elementary analysis, titration and GPC. To obtain the optimum reaction conditions, the influence of the feed ratio and addition order of raw materials, the concentration of initiators, temperature and pH on the grafting have been investigated.  相似文献   

19.
In this paper, energy transfer phenomena concerning the in-source graft copolymerization of styrene onto LDPE were investigated through the EPR analysis of the radical intermediates. The model solution experiments have shown a substantial deviation of the experimental G (radicals) values with respect to the additivity law, which reflect the negative effect of the styrene monomer concentration on the initiation rate of the graft copolymerization.The EPR measurements performed on polyethylene-co-styrene graft copolymers of various composition following low-temperature vacuum gamma irradiation have confirmed the decrease of the total radical yields with increasing the styrene concentration. The effect was partly attributed to the heterogeneity of the graft copolymer matrix and to the lack of molecular mobility in the solid state at low temperature, which prevents the attainment of the favourable geometrical configurations in intermolecular energy and charge transfer events.  相似文献   

20.
Well‐defined, core‐shell poly(methyl methacrylate) (PMMA)/casein nanoparticles, ranging from 80 to 130 nm in diameter, were prepared via a direct graft copolymerization of methyl methacrylate (MMA) from casein. The polymerization was induced by a small amount of alkyl hydroperoxide (ROOH) in water at 80 °C. Free radicals on the amino groups of casein and alkoxy radicals were generated concurrently, which initiated the graft copolymerization and homopolymerization of MMA, respectively. The presence of casein micelles promoted the emulsion polymerization of the monomer and provided particle stability. The conversion and grafting efficiency of the monomer strongly depended on the type of radical initiator, ROOH concentration, casein to MMA ratio, and reaction temperature. The graft copolymers and homopolymer of PMMA were isolated and characterized with Fourier transform infrared spectroscopy and differential scanning calorimetry. The molecular weight determination of both the grafted and homopolymer of PMMA suggested that the graft copolymerization and homopolymerization of MMA proceeded at a similar rate. The transmission electron microscopic image of the nanoparticles clearly showed a well‐defined core‐shell morphology, where PMMA cores were coated with casein shells. The casein shells were further confirmed with a zeta‐potential measurement. Finally, this synthetic method allowed us to prepare PMMA/casein nanoparticles with a solid content of up to 31%. Thus, our new process is commercially viable. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3346–3353, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号