首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethylene has been grafted with maleic anhydride, as proved by the infrared spectra and the properties of the grafted films. The influence of oxygen and a comparison of the effectiveness of benzoyl peroxide and AIBN showed that polyethylene macroradicals are formed through the decomposition of hydroperoxide and peroxide groups. Side chains of poly(maleic anhydride) are formed by a combination of polyethylene macroradicals with those of poly(maleic anhydride). This mechanism of reaction was confirmed by the influence of the amount of film, the initiator and monomer concentrations, and temperature on the percentage of grafting.  相似文献   

2.
The oxidation of tert-butyl phenylacetate in ortho-dichlorobenzene at 140°C occurs with short chains. The primary nonperoxide reaction products (tert-butyl α-hydroxyphenylacetate, tert-butyl α-oxophenylacetate, and benzaldehyde) are formed by the decomposition of a hydroperoxide (tert-butyl α-hydroperoxyphenylacetate) and (or) by the recombination of peroxy radicals with and without chain termination. Benzaldehyde and tert-butyl α-hydroxyphenylacetate undergo radical chain oxidation in a reaction medium to result in benzoic acid and tert-butyl α-oxophenylacetate. Homolytic hydroperoxide decomposition is responsible for process autoacceleration and results in benzaldehyde, which is also formed from hydroperoxide by a nonradical mechanism, probably, via a dioxetane intermediate. Both of the reactions are catalyzed by benzoic acid. Benzoic acid has no effect on hydroperoxide conversion into tert-butyl α-oxophenylacetate, which most likely occurs as a result of hydroperoxide decomposition induced by peroxy radicals. The rate constants of the main steps of the process and kinetic parameters have been calculated by solving an inverse kinetic problem.  相似文献   

3.
Zinc chloride reduces the rate of thermal and thermooxidative decompositions of polymethacrylic esters and increases the thermal decomposition rate of polyacrylic esters. Mechanisms of the thermal decompositions of polymethacrylates and polyacrylates in the presence of ZnCl2 have been suggested.For thermal decomposition polymethacrylic esters, the rate of depolymerization decreases due to the formation of cycles in a polymer chain by reaction of Zinc chloride with neighbouring ester groups. For thermooxidative decomposition of polymethacrylates, ZnCl2 decreases also the rate of initiation of depolymerization and causes decomposition of hydroperoxide groups by a heterolytic mechanism. The increase in thermal decomposition rate of polyacrylic esters results from the high activity of complexes of ester groups and ZnCl2 in decomposition reactions with formation of alcohol and CO2 through Cameron mechanism.  相似文献   

4.
The experimental kinetics of decomposition of polyethylene hydroperoxides in the melt is re-examined. It is found that the rates determined are more accurate if only the “free” hydroperoxides are taken into account instead of the total hydroperoxides that include also the “associated” hydroperoxides. Then, decomposition of polyethylene hydroperoxides in the melt can be attributed unambiguously to a first-order reaction that is valid in the whole time range of the thermolysis experiments. Nevertheless, the first-order rate constant determined this way increases with the initial hydroperoxide concentration. This constitutes a significant difference with the first-order rate constants that are valid in low molecular mass chemistry and are independent of the initial concentration of the reacting species. It has already been concluded previously that this experimental first-order rate cannot be attributed to true monomolecular hydroperoxide decomposition. Hence, another or other reactions must be envisaged for the interpretation of the specific first-order decomposition of the hydroperoxides in polyethylene melts.  相似文献   

5.
《European Polymer Journal》1985,21(2):101-105
The thermal decomposition of cumene hydroperoxide (CHP) by the metal complex, 2,2′-thiobis(4-tert-octylphenolato)n-butylamine (Cyasorb UV 1084), in hexane solution and in the temperature range 27–70°, has been examined. The complex is an effective hydroperoxide decomposer at a molar ratio of [CHP]/[complex] = 0.19; at higher molar ratios, an induction period is present. The peroxidolytic effect increases with temperature rise and is attributed to a homolytic mechanism at low ratios of hydroperoxide to complex and to an ionic mechanism when the former is in excess. Kinetic analysis of the data yielded rate constants of 1.06 × 10−5sec−1 at 27° and 2.38 × 10−3sec−1 at 200°, at low ratios of CHP to complex, highlighting the efficiency of the process at high temperatures. The latter, coupled with the observed antioxidant behaviour of this metal complex in polypropylene during both processing and photooxidative conditions, lead to the conclusion that hydroperoxide decomposition must play an important role in the stabilising action of Cyasorb UV 1084 in this polymer.  相似文献   

6.
The influence of oxygen pressure p (0.016-0.1 MPa) on polyisoprene thermal oxidation at 100 °C has been studied by chemiluminescence (CL). The maximum CL intensity was found to be almost proportional to p, whereas the induction time is influenced in the same way but to a lesser extent. Assuming that the classical mechanistic scheme with initiation by bimolecular hydroperoxide decomposition and termination by bimolecular radical combination, partially studied by Tobolsky and co-workers in the 1950s, is valid, it was established that chemiluminescence originates essentially from hydroperoxide decomposition. A theory which tries to reconcile this result with the most popular hypothesis according to which light is emitted by terminating peroxyl bimolecular combination is proposed.  相似文献   

7.
The decomposition of tert-butyl hydroperoxide in a chlorobenzene medium in the presence of complexes of dibenzo-18-crown-6 with calcium, strontium, and barium chlorides has been studied. It has been found and kinetically proven that the decomposition of tert-butyl hydroperoxide is preceded by the formation of an intermediate hydroperoxide–catalyst complex. Kinetic and thermodynamic parameters of the complex formation have been determined.  相似文献   

8.
Aspila KI  Sastri VS  Chakrabarti CL 《Talanta》1969,16(7):1099-1102
The influence of the substituent on the nitrogen atom with respect to the rate and pattern of decomposition of N,N-disubstituted dithiocarbamie acids has been studied. The rates of decomposition with respect to such variables as pH, temperature (activation parameters) and heavy water medium (solvent isotope effect), have been determined, and a mechanism to accommodate the observed results has been proposed.  相似文献   

9.
Studies on the low temperature oxidation of polyolefins have been the subject matter of several investigations because of interest in understanding the aging and weathering of polymers. One of the key steps in such an oxtdatton is the formation of hydroperoxide. Estimation of the hydroperoxide in oxidized samples, which is conventionally done by iodometric titrations, is quite important to gain knowledge about the kinetics and mechanism of the process. The present investigation is the first report of the thermal analysis of polypropylene hydroperoxide samples from two angles: (1) the thermal behavior of its decomposition and (2) whether such an analysis leads to knowledge of the concentration of hydroperoxide in the sample.  相似文献   

10.
Vinyl and vinylidene group formation is detected in the initial stages of polyethylene processing. In the high temperature range (170-200 °C) the amount formed is small but significant. Formation of these double bonds is usually obscured by their rapid consumption. Bimolecular hydroperoxide decomposition does not seem to be an important source for these products in the early stages of processing. Vinyl and vinylidene group formation can be attributed mainly to intramolecular decomposition of special hydroperoxide groups. The data suggest vinyl groups to arise from secondary hydroperoxide groups formed in α-position to methyl branching. Intramolecular hydroperoxide decomposition involving a primary hydrogen atom from the methyl group yields a vinyl group and an aldehyde. Vinylidene groups seem to arise from secondary hydroperoxide groups formed in α-position to quaternary structures that necessarily include one methyl group. Intramolecular hydrogen abstraction of a primary hydrogen atom from the methyl group yields a vinylidene group and an aldehyde. The calculated rate parameters are in agreement with the thermochemical estimations relative to intramolecular abstraction of primary hydrogen atoms for both reactions. Vinyl groups are also formed on bimolecular hydroperoxide decomposition. The yield of vinylidene groups from the last reaction is negligible.  相似文献   

11.
Nanocomposites are obtained by the radical polymerization of styrene and methyl methacrylate on the surface of a dispersed filler containing chemisorbed compounds of quaternary ammonium, which catalyze decomposition of cumene hydroperoxide. The heterogeneous catalysts of hydroperoxide decomposition are obtained via the adsorption of cetyltrimethyl ammonium bromide and acetylcholine chloride on sodium montmorillonite, cellulose, and chitosan. The highest rate of the polymerization of both monomers is provided by the cellulose–cetyltrimethyl ammonium bromide catalyst. For a more hydrophilic methyl methacrylate, the rate of radical initiation is significantly lower at the same concentrations of the catalyst and hydroperoxide compared with hydrophobic styrene; however, the rate of polymerization is higher than for styrene because of a higher activity of methyl methacrylate in chain-propagation reactions. Relatively high rates of radical generation upon contact of cellulose–cetyltrimethyl ammonium bromide and cellulose–acetylcholine with hydroperoxides open the possibility to create cellulose-based disinfecting and medical materials.  相似文献   

12.
Oxygen has been used as an initiator of the free-radical cyanoethylation of tetrahydrofuran by acrylonitrile. It has been shown that the initiation takes place mainly through the decomposition of tetrahydrofuran hydroperoxide, which is formed in an autooxidation of tetrahydrofuran. The initiating activity of tetrahydrofuran hydroperoxide at various temperatures has been studied. Initation at 130 °C is the most effective. The initiating activities of tetrahydrofuran hydroperoxide and of tert-butyl hydroperoxide have been compared.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 21–24, January, 1984.  相似文献   

13.
In petrochemistry, dicumyl peroxide (DCPO) is used in various resins for improving physical properties, which was produced by cumene hydroperoxide (CHP) with oxidization reaction, redox reaction, and dehydration reaction. The reactant, CHP, is a typical organic hydroperoxide and has been intrinsically unstable and reactive due to its bivalent -O-O- structure which can be broken readily with bond-dissociation energy. This sequence on sensitive study aimed at the thermal hazard evaluation for the reactive and incompatible characteristics of CHP mixed with various inorganic alkaline solutions. Differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2) were used to analyze the thermal hazards and runaway reaction of redox system, such as decomposition of CHP in cumene solution and CHP react with inorganic alkaline solutions, exothermic onset temperature, peak power, heat of decomposition of dynamic scanning tests, adiabatic self-heating rate, pressure rise rate, maximum temperature, maximum pressure of reaction system, etc. The results of the tests have proven helpful in establishing safe handling, storage, transportation, and disposal guidelines.  相似文献   

14.
The liquid-phase oxidation of benzothiophene and dibenzothiophene by cumyl hydroperoxide in the presence of supported metal oxide catalysts was carried out in octane in an N2 atmosphere at 50–80°C. The cumyl hydroperoxide, benzothiophene, and dibenzothiophene conversions and the yield of sulfones were determined for catalysts of various natures. In the presence of MoO3/SiO2, the most efficient and most readily regenerable catalyst, the benzothiophene conversion was ~60% and the dibenzothiophene conversion was as high as 100% upon almost complete consumption of cumyl hydroperoxide. The influence of unsaturated and aromatic compounds (oct-1-ene, toluene) on the catalytic effect was studied. The kinetics of substrate oxidation and cumyl hydroperoxide decomposition and an analysis of the cumyl hydroperoxide conversion products suggested a benzothiophene and dibenzothiophene oxidation mechanism including the formation of an intermediate complex of the hydroperoxide with the catalyst and the substrate and its transformation via heterolytic and homolytic routes.  相似文献   

15.
The kinetics of cumyl hydroperoxide (CHP) decomposition catalyzed by molybdenyl propanediolate (Cat) and decomposition products are studied in the presence of 2-methylpropanol-1 (MP). Phenol, acetone, 2-phenylpropanol-2 (PhP), and acetophenone (APh) are the main products of cumyl hydroperoxide decomposition. The concentration of 2-methylpropanol-1 affects not only the ratio between the rates of heterolytic and homolytic decomposition of cumyl hydroperoxide, but also the ratio between the products of hydroperoxide homolysis, that is, the [2-phenylpropanol-2]/[acetophenone] ratio. The dissociation constants calculated for the catalyst-2-methylpropanol-1 and catalyst-2(2-methylpropanol-l) complexes are 0.275 and 4.910 mol/1, respectively. The exchange of hydroperoxide ligands in the ROH-catalyst-ROOH systems was studied by1H NMR spectroscopy. Exchange interactions affect the rate and direction of hydroperoxide decomposition  相似文献   

16.
The thermolysis of polyethylene hydroperoxides is attributed to the reaction of two hydroperoxide groups. This bimolecular reaction appears as a first-order reaction with the mean values of the hydroperoxide concentrations that can be used for the experimental verification of the kinetics. In low molecular mass liquids and solutions these findings would be irreconcilable. However, in polymer melts, this contradiction is more apparent than real. It is a consequence of the heterogeneous kinetics valid in polymer melts. The bimolecular reaction involves the decomposition of pairs of hydroperoxide groups that are relatively close in the elementary oxidation volumes. By diffusion these hydroperoxide groups can come close enough for reaction. From the chemical point of view the decomposition is a bimolecular reaction. However, from the kinetic point of view it is a first-order reaction of the hydroperoxide pairs. The dependency of the first-order rate on the initial hydroperoxide concentration is explained by the heterogeneous kinetics. The activation energy of the overall process can be related to the sum of the activation energies pertaining to the chemical reaction and to the diffusion process.  相似文献   

17.
Abstract— Reaction of singlet oxygen (1Δg, 1O2) with cis -polyisoprene yields an allylic hydroperoxide with an olefinic double bond shifted in the polymer chain. The photochemical decomposition of the resultant hydro-peroxide and the subsequent polymer chain scission kinetics have been studied in the absence of oxygen. Quantum yields of hydroperoxide decomposition range from 3.1 to 8.4 in cyclohexane, depending on the initial amount of hydroperoxide in the polymer. On the other hand, the quantum yields for polymer chain scission are low, and vary with the frequency of the incident light. The ratio for number of polymer scissions per number of hydroperoxy groups decomposed is of the order of 10-2. The polymer chain degradation is sensitized by the addition of ketones. Based on these data, a reaction mechanism for the overall photodegradation of the cis -polyisoprene initiated by singlet oxygen is proposed.  相似文献   

18.
Mechanistic schemes of radical oxidation of hydrocarbon polymers in which initiation is only due to unimolecular or bimolecular hydroperoxide decomposition have been studied. The results of their kinetic analysis have been compared with literature data relative to the thermal oxidation of polypropylene in solid state (60-160°C). These data are in remarkably good agreement with the “unimolecular” scheme whose main characteristics are: (1) the quasi-independence of the kinetic behavior with initial conditions (for low initial content of thermolabile structures), and (2) the fact that an arbitrarily defined induction period depends only on the rate constant of unimolecular hydroperoxide decomposition. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Nondoped and nitrogen-doped (N-doped) carbon nanofiber (CNF) electrodes were prepared via a floating catalyst chemical vapor deposition (CVD) method using precursors consisting of ferrocene and either xylene or pyridine to control the nitrogen content. Structural and compositional differences between the nondoped and N-doped varieties were assessed using TEM, BET, Raman, TGA, and XPS. Electrochemical methods were used to study the influence of nitrogen doping on the oxygen reduction reaction (ORR). The N-doped CNF electrodes demonstrate significant catalytic activity toward oxygen reduction in aqueous KNO(3) solutions at neutral to basic pH. Electrochemical data are presented which indicate that the ORR proceeds by the peroxide pathway via two successive two-electron reductions. However, for N-doped CNF electrodes, the reduction process can be treated as a catalytic regenerative process where the intermediate hydroperoxide (HO(2)(-)) is chemically decomposed to regenerate oxygen, 2HO(2)(-) <==> O(2) + 2OH(-). The proposed electrocatalysis mechanisms for ORR at both nondoped and N-doped varieties are supported by electrochemical simulations and by measured difference in hydroperoxide decomposition rate constants. Remarkably, approximately 100 fold enhancement for hydroperoxide decomposition is observed for N-doped CNFs, with rates comparable to the best known peroxide decomposition catalysts. Collectively the data indicate that exposed edge plane defects and nitrogen doping are important factors for influencing adsorption of reactive intermediates (i.e., superoxide, hydroperoxide) and for enhancing electrocatalysis for the ORR at nanostructured carbon electrodes.  相似文献   

20.
Cumyl hydroperoxide decomposition in chlorobenzene in the presence of magnesium, zinc, cadmium, or mercury 2-ethylhexanoate has been investigated. It has been established and kinetically proved that the decomposition reaction is preceded by the formation of a hydroperoxide-catalyst complex. Thermodynamic parameters of this complexation have been determined. The catalytic activity of the salts correlates with the ionization potentials of the metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号