首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystallization process of poly(ethylene terephthalate)/silica nanocomposites were investigated by differential scanning calorimetry (DSC) and then analyzed using the Avrami method. The results indicated that the crystallization of pure poly(ethylene terephthalate) (PET) was fitted for thermal nucleation and three‐dimensional spherical growth throughout the whole process, whereas the crystallization of PET/silica nanocomposites exhibits two stages. The first stage corresponds to athermal nucleation and three‐dimensional spherical growth, and the second stage corresponds to recrystallization caused by the earlier spherulites impingement. The crystallization rate increases remarkably and the activation energies decrease considerably when silica nanoparticles are added. The subsequent melting behavior of the crystallized samples shows that the melting point (T m) of nanocomposites is higher than that of pure PET, which might be caused by two factors: (1) The higher melting point might be due to some hindrance to the PET chains caused by the nanoparticles at the beginning of the melting process; (2) it might also be the case that more perfect crystals can be formed due to the higher crystallization temperatures and lower activation energies of PET/silica nanocomposites.  相似文献   

2.
Poly(butylene terephthalate)/silica nanocomposites were prepared by in situ polymerization of terephthalic acid, 1,4-butanediol and silica. Transmission electron microscopy (TEM) was used to examine the quality of the dispersion of silica in the PBT matrix. The non-isothermal crystallization behavior of pure PBT and its nanocomposites was studied by differential scanning calorimetry (DSC). The results show that the crystallization peak temperatures of PBT/silica nanocomposites are higher than that of pure PBT at a given cooling rate. The values of halftime of crystallization indicate that silica could act as a heterogeneous nucleating agent in PBT crystallization and lead to an acceleration of crystallization. The non-isothermal crystallization data were analyzed with the Avrami, Ozawa, and Mo et al. models. The non-isothermal crystallization process of pure PBT and PBT/silica nanocomposites can be best described by the model developed by Mo et al. According to the Kissinger equation, the activation energies were found to be ?217.1, ?226.4, ?259.2, and ?260.2 kJ/mol for pure PBT and PBT/silica nanocomposites with silica weight content of 1, 3 and 5 wt%, respectively.  相似文献   

3.
The crystallization kinetics of poly(ethylene terephthalate)/attapulgite (AT) nanocomposites and their melting behaviors after isothermal crystallization from the melt were investigated by DSC and analyzed using the Avrami method. The isothermal crystallization kinetics showed that the addition of AT increased both the crystallization rate and the isothermal Avrami exponent of PET. Step-scan differential scanning calorimetry was used to study the influence of AT on the crystallization and subsequent melting behavior in conjunction with conventional DSC. The results revealed that PET and PET/AT nanocomposites experience multiple melting and secondary crystallization processes during heating. The melting behaviors of PET and PET/AT nanocomposites varied in accordance with the crystallization temperature and shifted to higher temperature with the increase of AT content and isothermal crystallization temperature. The main effect of AT nanoparticles on the crystallization of PET was to improve the perfection of PET crystals and weaken its recrystallization behavior.  相似文献   

4.
The nanocomposite films of a functionalized graphene sheet (FGS) and poly(ethylene oxide) (PEO) were cast from the physical blend of an aqueous FGS dispersion assisted by sodium dodecyl sulfate and an aqueous PEO solution. The thermal properties observed by differential scanning calorimetry suggested that FGS had a nucleating effect on the PEO crystallization. However, we found FGS actually hindered the growth of PEO crystals. The dynamic mechanical properties indicated that FGS effectively reinforced the matrix PEO. The FGS also efficiently improved the electric conductivity of PEO. With the addition of 2 parts of FGS per 100 parts of PEO, the conductivity was increased by more than 103-fold from that of pristine PEO.  相似文献   

5.
Abstract

Poly(butylene adipate-co-terephthalate) (PBAT) nanocomposite films with various contents of nano-titanium dioxide (TiO2) and titanium dioxide doped silver (Ag-TiO2) were prepared by a solvent casting method. The TiO2 and Ag-TiO2 nanoparticles were surface-modified with silane coupling agents to improve their compatibility and dispersibility in the PBAT matrix. They were denoted as mTiO2 and mAg-TiO2, and were characrterized by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). The morphology of the PBAT nanocomposite films was studied by field emission scanning electron microscopy (FE-SEM). The crystallinity of the PBAT film increased upon the introduction of the nano-TiO2/Ag-TiO2. Its mechanical properties and gas barrier properties were also significantly improved. In addition, the PBAT/mTiO2 and PBAT/mAg-TiO2 nanocomposite films showed a strong antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) food-borne pathogenic bacteria.  相似文献   

6.
Poly(butylene terephthalate) (PBT)/attapulgite (AT) nanocomposites were prepared via in-situ polymerization without pre-modification of AT. By this method, PBT chains were successfully grafted onto the surface of AT, which was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Scanning electron microscope examination indicated the uniform dispersion of AT nanoparticles in PBT matrix. The crystallization behavior of PBT/AT nanocomposites was investigated by X-ray diffraction patterns, differential scanning calorimetry, and step-scan differential scanning calorimetry. The non-isothermal crystallization processes were analyzed with the Avrami, Ozawa, and Mo methods. Crystallization activation energies of the samples were also determined by the Kissinger method. The results indicated that AT could act as a heterogeneous nucleating agent in PBT crystallization and lead to an acceleration of crystallization, while AT also acted as a physical hindrance to retard the transport of polymer chains to the growing crystals.  相似文献   

7.
Organic montmorillonite (MMT) reinforced poly(trimethylene terephthalate) (PTT)/ polypropylene (PP) nanocomposites were prepared by melt blending. The effects of MMT on the nonisothermal crystallization of the matrix polymers were investigated using differential scanning colorimetry (DSC) and analyzed by the Avrami equation. The DSC results indicated that the effects of MMT on the crystallization processes of the two polymers exhibited great disparity. The PTT's crystallization was accelerated significantly by MMT no matter whether PTT was the continuous phase or not, but the thermal nucleation mode and three-dimensional growth mechanism remained unchanged. However, in the presence of MMT, the PP's crystallization was slightly retarded with PP as the dispersed phase, and was influenced little with PTT as the dispersed phase. When the MMT content was increased from 2_wt% to 7_wt%, the crystallization of the PTT phase was slightly accelerated, whereas the crystallization of the PP phase was severely retarded, especially at lower temperatures. Moreover, the nucleation mechanism for the PP's crystallization changed from a thermal mode to an athermal one. In the polypropylene-graft-maleic anhydride (PP-g-MAH) compatibilized PTT/PP blends, with the addition of 2_wt% MMT during melt blending, the T c (PTT) shifted 7.8°C to lower temperature and had a broadened exotherm, whereas the T c (PP) shifted 17.1°C to higher temperature, with a narrowed exotherm. TEM analysis confirmed that part of the PP-g-MAH was combined with MMT during blending.  相似文献   

8.
ABSTRACT

The analysis of plastics and fibers is of importance to forensic scientists, especially in the investigation of trace evidence. In this study, we use Fourier transform infrared microscope and confocal Raman spectroscope to investigate two kinds of polymers: poly(butylenes adipate-co-terephthalate) and poly(ethylene terephthalate), which are very similar in structure and cannot be discriminated easily with other instruments. Infrared and Raman spectra were tentatively interpreted. The indicative peaks (937 cm?1, 1121 cm?1 in Infrared spectra; 996 cm?1, 1396 cm?1 in Raman spectra) to distinguish the two polymers were also summarized. The data in this study can help forensic scientists identify these two polymers accurately and avoid wrong certificate of authenticity. The data also offer the producer and researchers an effective and fast method to characterize and identify the poly(butylenes adipate-co-terephthalate).  相似文献   

9.
Recycled poly(ethylene terephthalate) (r-PET) was blended with poly(ethylene octene) (POE) and glycidyl methacrylate grafted poly(ethylene octene) (mPOE). The nonisothermal crystallization behavior of r-PET, r-PET/POE, and r-PET/mPOE blends was investigated using differential scanning calorimetry (DSC). The crystallization peak temperatures (T p ) of the r-PET/POE and r-PET/mPOE blends were higher than that of r-PET at various cooling rates. Furthermore, the half-time for crystallization (t 1/2 ) decreased in the r-PET/POE and r-PET/mPOE blends, implying the nucleating role of POE and mPOE. The mPOE had lower nucleation activity than POE because the in situ formed copolymer PET-g-POE in the PET/mPOE blend restricted the movement of PET chains. Non-isothermal crystallization kinetics analysis was carried out based on the modified Avrami equation, the Ozawa equation, and the Mo method. It was found that the Mo method provided a better fit for the experimental data for all samples. The effective energy barriers for nonisothermal crystallization of r-PET and its blends were determined by the Kissinger method.  相似文献   

10.
Structural, Theological, thermal, and mechanical properties of blends of poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) obtained by melt blending were investigated using capillary rheometry, differential scanning calorimetry (DSC), scanning electron microscopic (SEM) observation, tensile testing. X-ray diffraction, and 1H nuclear magnetic resonance (NMR) measurements. The melt Theological behavior of the PEN/PET blends was very similar to that of the two parent polymers. The melt viscosity of the blends was between that of PEN and that of PET. Thermal properties and NMR measurement of the blends revealed that PEN is partially miscible with PET in the as molded blends, indicating that an interchange reaction occurs to some extent on melt processing. The blend of 50/50 PEN/PET was more difficult to crystallize compared with blends of other PEN/PET ratios. The blends, once melted during DSC measurements, almost never showed cold crystallization and subsequent melting and definitely exhibited a single glass transition temperature between those of PEN and PET during a reheating run. Improvement of the miscibility between PEN and PET with melting is mostly due to an increase in transesterification. The tensile modulus of the PEN/PET blend strands had a low value, reflecting amorphous structures of the blends, while tensile strength at the yield point increased linearly with increasing PEN content.  相似文献   

11.

Thermal properties and overall rates of isothermal crystallization from the melt of a commercial ionic copolyester (K‐X/SPET) based on poly(ethylene terephthalate) (PET) were analyzed in detail over a composition range from pure PET to a copolymer containing 10.1 mol% of potassium‐neutralized sulfonated PET. For measurements, differential scanning calorimetry (DSC) was used. Copolyesters with the ionic group content of 4.4 mol% or more were unable to crystallize. The isothermal melt crystallization of the copolyesters was analyzed using both the Avrami and the modified Lauritzen‐Hoffman equations. It was found that both the overall rate constant, as well as the Avrami parameter for the primary crystallization stage, varied with the sulfonated unit percentage—but surface free energy and work of folding were practically independent of them. The observed changes in the thermal properties and the kinetic parameters of crystallization were attributed to the comonomer effects and the intermolecular aggregation of the ionic groups.  相似文献   

12.
A range of blends based on 70 wt% of poly(trimethylene terephthalate) PTT with 30 wt% dispersed phase were produced via melt blending. The dispersed phase composition was varied from pure maleic anhydride grafted poly(ethylene-octene) (POE-g-MA) over a range of POE-g-MA:polypropylene (PP) ratios. The micromorphology and mechanical properties of the ternary blends were investigated. The results indicated that the domains of the POE-g-MA are dispersed in the PTT matrix, and at the same time the POE-g-MA encapsulate the PP domains. The interfacial reaction between the hydroxyl-end group of PTT and maleic anhydride (MA) during melt blending changes the formation from “isolated formation” to “capsule formation,” where the PP domains are encapsulated by POE-g-MA. Compared to the PTT/POE-g-MA blends, mechanical properties of ternary blends, such as tensile strength and Young's modulus, were improved significantly.  相似文献   

13.
Surface-modified silica was incorporated into bio-based polylactic acid (PLA) to improve its performance. The modification by aminosilane on the silica was confirmed through FTIR (Fourier transform infrared) spectra. Following the aminosilane modification, polyethylene glycol methyl ether (PEGME) was grafted, via the aminosilane, on the silica to form the desired surface-modified silica (PEGME-silica). The grafting percentage of polyethylene glycol methyl ether was about 6.9 wt%. Unmodified silica, having underwent a similar treatment to maintain the same thermal history but without adding silane and PEGME, was also prepared. The PEGME-silica system had slightly higher tensile strength than the unmodified silica system, with a rheological study showing an enhanced polymer matrix-dispersed silica interaction and better dispersion in morphology observations being proposed as the cause. The dynamic storage modulus in the terminal zone was reduced for large amounts of highly dispersed surface-modified silica in comparison with unmodified silica. Tan δ decreased significantly with increasing unmodified silica contents in the low frequency region, resulting in solid-like behaviors. On the other hand, there was only a limited decrement for modified silica-filled samples in the corresponding ranges, especially for low dosages of the modified silica. The shear thinning phenomenon appeared to be more pronounced for unmodified silica at high silica content, but not for modified silica. To the best of our knowledge, this is the first report of the effect of polyethylene glycol methyl ether (PEGME)-modified nanosilica on the properties of PLA/silica nanocomposites prepared under a melt mixing process to illustrate the significance of surface modification via Cole–Cole plots.  相似文献   

14.
Crystallization in ultrathin Poly(Ethylene Oxide)/Poly(Methyl Methacrylate) (PEO/PMMA) blend films with thickness of ca. 10 nm was investigated by means of microscopic and in situ spectroscopic methods. It was revealed that the blend films undergo a phase ordering in a humid atmosphere before or during crystallization, with PEO de-mixing with PMMA and segregating to the free film interface on the PMMA layer. The de-mixed PEO chains crystallize into a fractal-like morphology by a diffusion-limited process, and the crystal growth is 1-dimensional with Avrami exponent n ≈ 1, resulting in flat-on crystal lamellae with the PEO chains oriented normal to the film plane.  相似文献   

15.
Poly(ethylene terephthalate)/grafted carbon black (PET/GCB) and poly(ethylene terephthalate)/carbon black (PET/CB) composites were prepared by melt blending. The nucleating effect of CB and GCB were investigated using differential scanning calorimetry (DSC) analysis. The morphologies of the spherulites in PET, PET/CB and PET/GCB composites were observed by means of scanning electron microscopy (SEM). All results showed that GCB had higher nucleating activity than CB in PET and PET/GCB composite had higher rate of nucleation and crystallization. The melting behaviors of neat PET, PET/CB and PET/GCB composites after non‐isothermal crystallization were investigated as well. It was evident that the melting behavior of PET is greatly influenced by addition of CB and GCB.  相似文献   

16.
Polypropylene (PP) /poly(trimethylene terephthalate), (PTT), binary blends in the presence of two interfacial modifier as well as two organically modified nanoclay additives were studied in terms of mechanical and morphological characteristics. Scanning electron microscopy confirmed the incompatibility of the system which was solved to some extent through incorporating the nanoclay as well as functional compatibilizers. An evaluation of the specimens via static mechanical tests in tensile mode gave credence to the assumption that the higher the PTT content, the higher the mechanical performance would be. Furthermore, the compatibilizer-containing blends not only exhibited higher toughness, but also possessed enhanced stiffness when a maleated compatibilizer was added. The tensile modulus was promoted further in the presence of clay nanoparticles; however, toughness was somewhat sacrificed. The Barentsen as well as Halpin-Tsai models were found to describe the binary blends modulus. The reinforcing impact of the nanoclay was exploited to a greater degree in the presence of the compatibilizer.  相似文献   

17.
Poly(trimethylene terephthalate)(PTT)/thermoplastic polyester elastomer (TPEE) blends were prepared and their miscibility, crystallization and melting behaviors, phase morphology, dynamic mechanical behavior, rheology behavior, spherulites morphology, and mechanical properties were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), parallel-plate rotational rheometry, polarized optical microscopy (POM), wide angle X-ray diffraction (WAXD), universal tensile tester and impact tester, respectively. The results suggested that PTT and TPEE were partially miscible in the amorphous state, the TPEE rich phase was dispersed uniformly in the solid matrix with a size smaller than 2 μm, and the glass transition temperatures of the blends decreased with increasing TPEE content. The TPEE component had a good effect on toughening the PTT without depressing the tensile strength. The blends had improved melt viscosities for processing. When the blends crystallized from the melt state, the onset crystallization temperature decreased, but they had a faster crystallization rate at low temperatures. All the blends’ melts exhibited a predominantly viscous behavior rather than an elastic behavior, but the melt elasticity increased with increasing TPEE content. When the blends crystallized from the melt, the PTT component could form spherulites but their morphology was imperfect with a small size. The blends had larger storage moduli at low temperatures than that of pure PTT.  相似文献   

18.
A type of grafted carbon black (GCB), prepared with a low molecular weight antioxidant compound by in-situ reaction, was dispersed in poly(ethylene terephthalate) (PET) by a melt-blending process. Dispersion of fillers, volume resistivity, and thermal properties were investigated using scanning electron microscopy, a high-resistance meter, differential scanning calorimetry, and thermogravimetric analysis, respectively. The results show that, compared with carbon black (CB) particles, GCB particles dispersed better in the PET matrix, whereas the conductivity percolation threshold of PET/GCB was higher than that of PET/CB. The addition of GCB or CB elevated the cold crystallization temperature of PET, reflecting the effectiveness of carbon fillers as nucleating agents. But carbon fillers decreased the crystallization enthalpy of PET during both heating and cooling process. Both CB and GCB elevated the starting temperature of thermal degradation of PET and increased the amount of residues for the composites over that of neat PET.  相似文献   

19.
Poly(vinyl chloride)(PVC)/halloysite nanotubes (HNTs) nanocomposites were prepared by melt blending. The effects of HNT content on the mechanical properties, morphology, and rheological properties of the nanocomposites were investigated. The results showed that HNTs were effective in toughening and reinforcing PVC nanocomposites. The notched impact, tensile and flexural strength, and flexural modulus of the nanocomposites were remarkably increased compared with those for the pure PVC. Scanning electron microscopy (SEM) results illustrated the ductile behavior of the nanocomposites, with a possible cavitation mechanism. Transmission electron microscopy (TEM) results showed that HNTs were uniformly dispersed in the PVC matrix. Interfacial interaction of hydrogen bonding between the HNTs and PVC matrix was substantiated. The plasticization times of PVC/HNTs nanocomposites were found to be shorter and the equilibrium torque was higher than that for the pure PVC.  相似文献   

20.
Recycled poly(ethylene terephthalate) (R-PET) and virgin polyamide 6 (PA6) blends compatibilized with glycidyl methacrylate grafted poly(ethylene-octene) (POE-g-GMA) were melt blended. The morphological, rheological and mechanical properties of the prepared blends were investigated by scanning electron microscopy, rheology, and an electromechanical testing instrument, respectively. All of the blends showed a droplet dispersion type morphology, and the PA6 particle size decreased with increase in the POE-g-GMA concentration. The storage modulus (G′), loss modulus (G′′), and complex viscosity (η*) of the blends significantly increased at low frequency with the addition of POE-g-GMA. In addition, ‘‘Cole-Cole’’ plots showed that the elasticity of the blends was also increased by raising the compatibilizer dosage. It was also found that 10 wt% of POE-g-GMA caused 88.46 and 171.05% increments in Charpy impact strength and elongation at break with only a 21.66% decrement in tensile strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号