首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过共沉淀法制得类球形锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并用非水相共沉法对其进行CoAl2O4包覆得到LNCMO(x). 采用X射线衍射(XRD)、扫描电子显微术(SEM)和透射电子显微术(TEM)测试材料的结构和观察材料形貌. 结果表明,CoAl2O4在材料表面形成8 nm均匀包覆层,未改变主体材料的结构. 电化学性能测试表明,1%(by mass)CoAl2O4包覆量的LiNi1/3Co1/3Mn1/3O2材料(LNCMO(1))高充电电压(3.0 ~ 4.6 V,150 mA·g-1)100周期循环放电容量保持率为93.7%(无包覆LNCMO(0)保持率为74.4%);55 °C高温100周期循环容量保持率为77%(无包覆LNCMO(0)保持率17%). XRD和电感耦合等离子体原子发射光谱(ICP-AES)测试表明,CoAl2O4包覆的LNCMO(x)材料可有效地减缓材料中Mn离子在电解液的溶解,提高材料结构稳定性和热稳定性.  相似文献   

2.
在LiNi1/3Co1/3Mn1/3O2正极材料表面包覆ZnO,通过X射线衍射(XRD)和光电子能谱(XPS)分析包覆层对正极材料表面状态的改变,并考察了改性后材料的放电容量、首次不可逆容量等电化学性能变化. 结果表明:ZnO主要存在于材料表面并影响着材料表面组成和电化学性质,材料表面镍和锰的含量随着包覆量的增加而增大;400 oC热处理可使过渡金属与锌在材料表面形成复合氧化物,过渡金属的结合能增大;包覆2%(by mass,下同)的ZnO可有效抑制55 oC下充放电时3.6 V附近的不可逆反应,提高了材料的首次库仑效率;包覆2% ZnO的电池材料在55 oC/0.5C的放电比容量和循环寿命最佳.  相似文献   

3.
采用氨蒸发诱导法成功制备出纳米结构LiNi1/3Co1/3Mn1/3O2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、高分辨率透射电镜(HRTEM)、能量分散谱(EDS)和比表面测试等表征手段及恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能.研究表明该方法制备出的材料具有良好的α-NaFeO2层状结构,阳离子混排程度低.纳米片交错堆积而成核桃仁状形貌,片与片之间形成许多纳米孔,而且纳米片的侧面属于{010}活性面,能够提供较多的锂离子的脱嵌通道.在室温下及3.0-4.6 V充放电范围内,该材料在电流密度为0.5C、1C、3C、5C和10C时放电比容量分别为172.90、153.95、147.09、142.16和131.23mAh?g-1.说明其具有优异的电化学性能,非常有潜力用于动力汽车等高功率密度锂离子电池中.  相似文献   

4.
以硫酸锰、硫酸镍、硫酸钴为原材料、NaOH和氨水分别为沉淀剂和络合剂,采用共沉淀法制备三元正极材料前驱体Ni1/3Co1/3Mn1/3(OH)2. 探究了搅拌速度对造核颗粒形貌和晶核流量、氨水流量、浆料返流、搅拌桨对晶体结构、前驱体形貌、粒度及其粒度分布的影响. 物理表征结果表明,搅拌速度300 r•min-1时,生成的晶核聚集成球形或类球形,分散性好,颗粒粒径4~5 μm;在造核金属液流量0.4L•h-1,生长金属液流量1.72 L•h-1,搅拌桨为推进式时,产物为单一相的β-Ni(OH)2层状结构,粒度D50为6~7 μm,振实密度≥2.0 g•cm-3,比表面积6~10 m2•g-1;电化学测试结果表明,在3.0~4.25 V电压范围内,0.2 C时,其首次放电容量为149.7 mAh•g-1,循环100次后,容量保持率为94.09 %;产物满足高端三元正极材料厂家需求. 多釜串联工艺简单有效,具有可行性,有望用于三元正极材料前驱体的规模生产.  相似文献   

5.
高镍三元材料作为一种锂离子电池正极材料,因其较高的放电比容量而得到科学界和工业界的广泛关注。研究表明,高镍三元材料的比容量与材料中的Ni含量呈正相关,但Ni含量的增加也会加剧循环过程中的界面副反应,材料表面释氧以及结构转变等问题。本文采用ZrO2包覆LiNi0.8Co0.1Mn0.1O2材料,利用X射线衍射证明,在高温处理下ZrO2包覆物中的Zr4+会掺杂进LiNi0.8Co0.1Mn0.1O2材料表面晶格中,使得X射线衍射谱中的(003)衍射峰左移。电化学测试证明在4.3和4.5 V的截止电压下,改性最优的材料在1C循环100周后容量保持率分别从84.89%和75.60%提高到97.61%和81.37%,同时发现循环稳定性的提升主要来自材料表面的Zr4+掺杂。X射线光电子能谱证明Zr4+表层掺杂后材料的Ni化合价由Ni3+向Ni2+转变,透射电子显微镜观察到Zr4+的表层掺杂使得材料表面的层状结构发生重构,从而稳定了材料体相结构,提高了材料整体的循环稳定性。  相似文献   

6.
Several lithium-ion batteries of 18650-type were assembled with pristine or Al2O3-coated LiNi0.4Co0.2Mn0.4O2(NCM) as cathode material and mesocarbon microbeads(MCMB) as anode material. The cycling performance of the batteries was examined under 25℃ at a 2C rate within a potential range of 2.75-4.20 V. The changes of the crystal structure, the lattice parameter, the mean crystallite size, and the mean micro-strain of pristine NCM and Al2O3-coated NCM during the charge-discharge cycling were determined by X-ray diffraction(XRD). The results indicate that the bulk structure of Al2O3-coated NCM is more stable than that of pristine NCM, which leads to the better cycling performance of Al2O3-coated NCM compared to that of pristine NCM.  相似文献   

7.
王恩通  杨林芳 《应用化学》2022,39(8):1209-1215
以LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)为研究对象,通过共沉淀法制备了不同F物质的量分数(0%、1%、3%、5%)的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)三元正极材料(NCM),通过对NCM材料的晶格结构、微观形貌、电化学性能进行分析,结果表明:F掺杂后提高了NCM材料的结晶度,降低了阳离子混乱程度,适量的F掺杂有助于减小NCM三元正极材料的尺寸和提高均匀性,F的掺杂还能够降低NCM三元正极材料的极化现象,初始放电比容量随着F的掺杂含量升高呈现出先升高后降低的趋势,循环性能随着F的掺杂得到了提高,F掺杂物质的量分数为3%的NCM三元正极材料初始放电比容量167.2 mA·h/g,容量保持率达到98.5%,阻抗较小,电化学性能最优。  相似文献   

8.
将氢氧化物共沉淀法制备的(Ni1/3Co1/3Mn1/3)(OH)2在500℃热处理5 h得到具有尖晶石结构、纳米尺寸的氧化物M3O4(M=Ni1/3Co1/3Mn1/3).将其与LiOH及不同量的纳米MgO混合均匀,并在850℃热处理24 h制备了Li(Ni1/3Co1/3Mn1/3)1/xMgxO2(x=0,0.01,0.02,0.03,0.04,0.05)正极村料.随着Mg掺杂量的增大,正极材料的晶胞参数增大;少量的Mg掺杂增大了锂离子的扩散系数,而过度掺杂却使锂离子扩散系数有所降低,其中Li(Ni1/3Co1/3Mn1/3)0.98Mg0.02O2的锂离子扩散系数最大,其脱出和嵌入扩散系数分别为DLi-dein=29.20×10-11cm2·S-1和DLi-in=4.760×10-11cm2·s-1;其以3C倍率充放电的平均放电比容量为139.3 mAh·g-1,比未掺杂的原粉约高9.5 mAh·g-1;另外其循环性能也得到了大幅度改善.  相似文献   

9.
为解决LiNi0.5Co0.2Mn0.3O2正极材料在高温下循环性能差的问题,本文通过固相法对材料进行锆掺杂改性,研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2晶体结构和电化学性能的影响。研究表明,当锆掺杂量为1% (x)时,可以降低LiNi0.5Co0.2Mn0.3O2结构中的Li+/Ni2+离子混排,有助于材料电化学性能的提高,尤其是高温循环性能。在25 ℃、3.0-4.3 V下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环95次后容量保持率为92.13%,优于未掺杂样品(87.61%)。在55 ℃下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环115次后容量保持率仍有82.96%,远高于未掺杂样品(67.63%)。因此,少量锆掺杂对提升LiNi0.5Co0.2Mn0.3O2的高温循环性能有积极作用。  相似文献   

10.
金属锂电池被认为是具有良好前景的下一代高能量密度电池。然而,传统的碳酸酯类电解液与锂的亲和性差,在循环过程中由于锂枝晶的生长和固体电解质膜(SEI)的不稳定导致金属锂电池性能快速衰减。采用1.2 mol/L六氟磷酸锂(LiPF6)/二氟草酸硼酸锂(LiDFOB)/氟代碳酸乙烯酯(FEC)/碳酸二乙酯(DEC),并添加了双三氟甲磺酰亚胺锂(LiTFSI)作为电解液,对其在LiNi0.6Mn0.2Co0.2O2/40 μm-Li(单位面积上负/正极材料的实际容量的比N/P=2.85)电池中的电化学性能进行了研究。LiNi0.6Mn0.2Co0.2O2/40 μm-Li电池表现出优异的循环稳定性(循环120圈后,容量保持率>93%)和倍率性能(3C倍率下放电比容量为110 mA·h/g)。良好的电化学性能主要归因于该电解液可以在金属锂表面形成致密且稳定的SEI,并抑制锂枝晶的产生。  相似文献   

11.
采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2, 通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征. 结果表明, 该方法制备的材料具有良好的α-NaFeO2型层状结构(R3m(166)), 一次粒径平均大小为157 nm, 二次颗粒成球形. 同传统碳酸盐制备得到的材料相比, 该材料具备良好的倍率性能和循环性能, 在2.7-4.3 V 电压范围内, 0.1C (1.0C=180 mA·g-1)倍率下, 首次放电比容量为156.4mAh·g-1, 库仑效率为81.9%. 在较高倍率下, 即0.5C、5.0C和20C时, 其放电比容量分别为136.9、111.3、81.3mAh·g-1. 在1C倍率下100次循环容量保持率为92.9%, 高于传统共沉淀法得到的材料(87.0%).  相似文献   

12.
采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料, 并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3 含量变化对材料结构及电化学性能的影响.研究发现, 材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时, 样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似; 而当x≥0.4时, 样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时, 材料表现出两相共存的特征.HRTEM结果显示, 随着Li2MnO3含量的增加, 样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序, 并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明, 当x≤0.6时, 材料的放电比容量随着x的增加而增加; 当x>0.6时, 其放电比容量则随着x的增加而下降; 当x=0.6时, 放电比容量最高, 室温及高温(50℃)下分别为260 和304 mA·h/g.EIS研究结果表明, 这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加, 进而影响材料的电化学性能.  相似文献   

13.
A well-ordered and spherical LiNi0.6Co0.2Mn0.2O2 cathode material was successfully synthesized from Ni and Mn concentration-gradient precursors via co-precipitation. The crystal structure, morphology and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and charge-discharge tests. The material delivered an initial discharge capacity of 174.3 mAh/g at 180 mA/g (1 C rate) between 2.8 and 4.3 V and more than 93.1% of that was retained after 100 cycles. In addition, it also exhibited excellent rate capability, high cut-off voltage and temperature performance.  相似文献   

14.
以醋酸盐为原料, 以十六烷基三甲基溴化铵(CTAB)为分散剂, 通过水热合成-高温烧结的方法制备高镍三元正极材料LiNi0.6Co0.2Mn0.2O2. 结果表明, 适量分散剂CTAB的加入可有效调节材料的颗粒形貌尺寸, 降低锂镍混排, 改善材料的电化学性能. 加入2%(质量分数) CTAB时, 制备的电池材料具有完整有序的层状结构, 且颗粒均匀分散, 具有最佳的循环性能和高低温性能. 该材料在室温及倍率1C下循环100次后, 容量保持率为88.5%. 在?20, 25和55 ℃条件下及倍率0.1C充放电时, 首次放电比容量分别为60.3, 168.5和207.2 mA·h/g.  相似文献   

15.
Ti、Mg离子复合掺杂对LiNi0.4Co0.2Mn0.4O2性能的影响   总被引:2,自引:0,他引:2  
采用SEM、XRD、恒电流充放电、交流阻抗谱等方法研究了钛镁离子复合掺杂对LiNi0.4Co0.2Mn0.4O2的结构及其电化学性能的影响. 结果表明材料的XRD图谱中部分特征峰的强度比值有较大的变化. 1%(摩尔分数) 的Ti、Mg离子复合掺杂能显著地改善LiNi0.4Co0.2Mn0.4O2的倍率放电能力, 平台保持能力和高倍率下的循环性能. 交流阻抗谱表明钛镁离子掺杂抑制了LiNi0.4Co0.2Mn0.4O2在高放电倍率下循环的电化学反应阻抗Rct的增加. 采用几种不同价态的金属离子复合掺杂是改善嵌锂的镍钴锰系金属氧化物的倍率放电能力的有效途径.  相似文献   

16.
Spherical Ni0.8Co0.15Al0.05OOH precursor,prepared by a co-oxidation-controlled crystallization method,was used to synthesize LiNi0.8Co0.15Al0.05O2.The obtained LiNi0.8Co0.15Al0.05O2 materials showed excellent electrochemical performance,with an initial discharge capacity of 193.5 mAh/g and capacity retention of 95.1%after 50 cycles when cycled at 0.2℃rate between 2.8 and 4.3 V.  相似文献   

17.
魏奕民 《电化学》2018,24(1):81
镍钴锰三元材料LiNixCoyMnzO2 (x + y + z = 1)在容量、倍率、循环及热稳定性等方面的性能往往受到金属元素Ni、Co、Mn含量的显著影响. 其中,增加元素Ni的含量有助于提高材料的比容量。因此,LiNi0.6Co0.2Mn 0.2O2(NCM622)和LiNi0.8Co0.1Mn0.1O2(NCM811)成为了目前研究最为广泛的两款高镍三元正极材料. 但目前针对这两款材料的对比研究主要集中在材料比容量、热稳定性和循环稳定性的影响方面,而对材料动力学性能的研究较少,尤其是对材料本征动力学参数的表征尚未见报道. 本文采用单颗粒微电极技术,以粒径相同的 NCM622 和 NCM811 颗粒为研究对象,排除导电剂、粘结剂和电极结构的影响,从材料本征动力学性能评估的角度出发,分析了Ni元素的含量对这两款材料的充放电性能、交流阻抗谱、锂离子固相扩散系数和倍率放电性能等的影响. 结果表明,与NCM622 相比,随着Ni2+和Ni3+总含量的增加,NCM811 表现出更高的充放电容量、锂离子固相扩散系数、电化学反应活性和倍率放电性能. 以 20 C 放电,NCM811 材料的放电容量保持率仍可达到80.8%以上.  相似文献   

18.
P2-type layered oxide Na0.67Fe0.5Mn0.5O2 is recognized as a very promising cathode material for sodium-ion batteries due to the merits of high capacity, high voltage, low cost, and easy preparation. However, its unsatisfactory cycle and rate performances remain huge obstacles for practical applications. Here, we report a strategy of SnO2 modification on P2-type Na0.67Fe0.5Mn0.5O2 to improve the cycle and rate performance. Scanning electron microscope(SEM) and transmission electron microscope(TEM) images indicate that an insular thin layer SnO2 is coated on the surface of Na0.67Fe0.5Mn0.5O2 after medication. The coating layer of SnO2 can protect Na0.67Fe0.5Mn0.5O2 from corrosion by electrolyte and the cycle performance is well enhanced. After 100 cycles at 1 C rate(1 C=200 mA/g), the capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 retains 83 mA·h/g(64% to the initial capacity), while the capacity for the pristine Na0.67Fe0.5Mn0.5O2 is only 38 mA·h/g(33.5% to the initial capacity). X-Ray photoelectron spectroscopy reveals that the ratio of Mn4+ increases after SnO2 modification, leading to less oxygen vacancy and expanded lattice. As a result, the capacity of Na0.67Fe0.5Mn0.5O2 increases from 178 mA·h/g to 197 mA·h/g after SnO2 modification. Furthermore, the rate performance of Na0.67Fe0.5Mn0.5O2 is enhanced with SnO2 coating, due to high electronic conductivity of SnO2 and expanded lattice after SnO2 coating. The capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 at 5 C increases from 21 mA·h/g(pristine Na0.67Fe0.5Mn0.5O2) to 35 mA·h/g.  相似文献   

19.
本文研究了高镍NCM811材料LiNi0.83Co0.12Mn0.05O2高温45 °C循环失效机理. 通过电化学交流阻抗谱(EIS)技术分析发现45 °C循环失效前后SEI膜阻抗(RSEI)和电荷转移阻抗(Rct)增长率最快,分别达到83.43%和211.34%. 采用XPS、TEM及FFT转换、XRD、XANES等手段分别分析了RSEIRct增长的主要影响因素. 其中,RSEI增长因素主要包括部分有机SEI膜组分转化成碳酸锂等无机成分,同时反应生成的LiF富集在活性物质周围,SEI膜厚度增长,阻抗升高. Rct增长因素主要包括晶体结构被破坏,层状晶相结构向尖晶石和岩盐相的转化,材料开裂,使电荷转移阻抗增加. 此外,对固相传质阻抗(Rw)影响因素也进行了分析,主要包括锂镍混排加剧,过渡金属元素溶出导致锂离子固相传质阻抗上升.  相似文献   

20.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2.通过X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X射线能量散射谱(EDS)方法,研究了Ag/C包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响.结果表明,Ag/C包覆层的厚度约为25 nm,Ag/C包覆在保持了固溶体材料α-NaFeO2六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2的电化学性能.在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30次循环后,Ag/C包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%.循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号