首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional few-layer reduced graphene oxide-wrapped mesoporous Li4Ti5O12 (m-LTO@FLRGO) electrode is produced using a simple solution fabrication process. When tested as an anode for Liion batteries, the m-LTO@FL-RGO composite exhibits excellent rate capability and superior cycle life. The capacity of m-LTO@FL-RGO reaches 165.4 mA h g-1 after 100 cycles between 1 and 2.5 V at a rate of 1 C. Even at a rate of 30 C, a high discharge capacity of 115.1 mA h g-1 is still obtained, which is three times higher than the pristine mesoporous Li4Ti5O12 (m-LTO). The graphene nanosheets are incorporated into the m-LTO microspheres homogenously, which provide a high conductive network for electron transportation.  相似文献   

2.
Novel carbon quantum dots modified potassium titanate nanotubes (CQDs/K2Ti6O13) composite was synthesized and exhibited high photocatalytic activity for degradation of amoxicillin under UV and visible lights with nine wavelengths. Better amoxicillin removal was achieved at lower wavelength irradiation due to its higher photo energy.  相似文献   

3.
Li4Ti5O12 nanoparticles were precipitated from ethylene glycol solution of titanium tetra isopropoxide (Ti(O-iPr)4) and Li2O2 by refluxing at 197 °C for 12 h. The obtained particles were filtered and dried at 100 °C for 12 h, and the dried powder samples were heated at 320, 500 and 800 °C for 3 h. The X-ray diffraction patterns of the obtained samples exhibited a good fit with the spinel phase. The field emission-SEM images of the dried powder sample and the samples heated at 320, 500 and 800 °C for 3 h showed a uniform spherical morphology with a particle size of 5, 8, 10 and 400 nm, respectively. According to the results of electrochemical testing, the dried powder sample and the samples heated at 320, 500, and 800 °C for 3 h showed initial capacities of 200, 310, 320, and 260 mA h/g, respectively, at a current density of 0.05 mA/cm2. Nanosized (6–8 nm) particles with good crystallinity were obtained by controlling the synthesis conditions. The sample heated at 500 °C for 3 h exhibited a high capacity and an excellent rate capability over 60 cycles.  相似文献   

4.
Carbon-coated Li_4Ti_5O_(12) sample was synthesized by a sol-gel method. The Li_4Ti_5O_(12) powders were obtained by calcinations of the gels at 750, 800, 850,900 ℃ at N_2 atmosphere. The structure, morphology and electrochemical properties of the materials were characterized by SEM, XRD and charge and discharge. The final product sintered at 850 ℃ demonstrates excellent performance with a specific capacity of 163.5 mAh/g after 100 cycles at 1C. Furthermore, the discharge specific capacity of the sample can retain 80 mAh/g at 10C.  相似文献   

5.
将LiNO3和Ti(OC4H9)4填填充在有序介孔碳CMK-3 孔道中, 然后烧结合成了Li4Ti5O12/CMK-3复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征. 利用差热-热重分析(TG-DTA)测试复合材料中Li4Ti5O12的含量. 利用充放电测试、循环伏安和电化学阻抗技术考察了复合材料作为锂离子电池负极材料的性能. 发现Li4Ti5O12分布在CMK-3孔道中及其周围, 复合材料的高倍率充放电性能显著优于商品Li4Ti5O12, 复合材料中Li4Ti5O12的比容量明显高于除去CMK-3的样品(在1C倍率时比容量为117.8 mAh·g-1), 其0.5C、1C和5C倍率的放电比容量分别为160、143 和131 mAh·g-1, 库仑效率接近100%, 5C倍率时循环100次的容量损失率只有0.62%. 本研究结果表明CMK-3明显提高了Li4Ti5O12的高倍率充放电性能, 可能是CMK-3特殊的孔道结构和良好的导电性减小了Li4Ti5O12的粒径并提高了其电导率.  相似文献   

6.
LiMn2O4表面包覆Li4Ti5O12的制备及倍率特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用固相法合成了尖晶石型LiMn2O4,并通过溶胶-凝胶法制备了不同物质的量的百分比含量Li4Ti5O12包覆的正极材料。X-射线衍射和扫描电镜结果表明,Li4Ti5O12微粒包覆在LiMn2O4的表面没有产生晶体结构的变化。实验电池在室温下,以1C,2C和5C倍率作充放电循环测试;结果表明,与未包覆的LiMn2O4相比,表面包覆Li4Ti5O12微粒的正极材料在高倍率下具有更好的循环稳定性。  相似文献   

7.
Nanosized Li4Ti5O12 powders are synthesized by a polymerization-based method using ti-tanium butoxide and lithium nitrate as precursors and furfuryl alcohol as a polymerizable solvent. The prepared samples are characterized by X-ray diffraction, scanning electron mi-croscopy, transmission electron microscopy and Braunauer-Emmett-Teller (BET) analysis. The electrochemical performances of these Li4Ti5O12 powders are also studied. The effect of different surfactants including citric acid, polyvinylpyrrolidone, and cetyltrimethyl am-monium bromide on the structure and properties is also investigated. It is found that pure spinel phase of Li4Ti5O12 is obtained at an annealing temperature of 700 oC or higher. The use of surfactants can improve the powder morphology of nanosized particles with less ag-glomeration. With suitable annealing temperature and the addition of surfactant, Li4Ti5O12 powders with high BET surface area and favorable electrochemical performance can be ob-tained.  相似文献   

8.
Li4Ti5O12(LTO) anode material demonstrates superior cycling performance due to its stable spinel structure and high lithiation/de-lithiation potential.Herein,a novel energy-saving solid-phase synthesis route for LTO has been successfully designed,employing the cheap industrial intermediate product of metatitanic acid (HTO) as titanium source.Through the in-situ Fourier transform infrared spectroscopy (FTIR)and ex-situ X-ray diffraction (XRD),it is revealed for th...  相似文献   

9.
The kinetics describing the thermal decomposition of Li4SiO4 and Li2SiO3 have been analysed. While Li4SiO4 decomposed on Li2SiO3 by lithium sublimation, Li2SiO3 was highly stable at the temperatures studied. Li4SiO4 began to decompose between 900 and 1000 °C. However, at 1100 °C or higher temperatures, Li4SiO4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were −408 and −250 kJ mol−1 for the solid and liquid phases, respectively. At the same time, the Li4SiO4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be −331 kJ mol−1. On the other hand, Li2SiO3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments.  相似文献   

10.
The thermal conductivity and heat capacity of high-purity single crystals of yttrium titanate, Y2Ti2O7, have been determined over the temperature range 2 K?T?300 K. The experimental heat capacity is in very good agreement with an analysis based on three acoustic modes per unit cell (with the Debye characteristic temperature, θD, of ca. 970 K) and an assignment of the remaining 63 optic modes, as well as a correction for CpCv. From the integrated heat capacity data, the enthalpy and entropy relative to absolute zero, are, respectively, H(T=298.15 K)−H0=34.69 kJ mol−1 and S(T=298.15 K)−S0=211.2 J K−1 mol−1. The thermal conductivity shows a peak at ca. θD/50, characteristic of a highly purified crystal in which the phonon mean free path is about 10 μm in the defect/boundary low-temperature limit. The room-temperature thermal conductivity of Y2Ti2O7 is 2.8 W m−1 K−1, close to the calculated theoretical thermal conductivity, κmin, for fully coupled phonons at high temperatures.  相似文献   

11.
A relatively simple galvanostatic method was used for the evaluation on the average chemical diffusion coefficient of lithium-ion in spinel Li4Ti5O12 prepared by solid-state reaction technique. The diffusion coefficient of lithium-ion was estimated to be 2.8×10-13 cm2·s-1 and 1.3×10-13 cm2·s-1 for charge and discharge, respectively.  相似文献   

12.
The development of fast rechargeable lithium ion batteries(LIBs)is highly dependent on the innovation of advanced high-power electrode materials.In this work,for the first time,we report a sacrificial NiO arrays template method for controllable synthesis of self-supported hierarchical porous Li4Ti5O12/C(LTO/C)nanoflakes arrays,for use as fast rechargeable anodes for LIBs.The ultrathin(2-3 nm)carbon layer was uniformly coated on the LTO forming arrays architecture.The hierarchical porous LTO/C nanoflakes consisted of primary cross-linked nanoparticles of 50-100 nm and showed large porosity.Because of the enhanced electrical conductivity and accelerated ion transfer channels,the well-designed binderfree porous LTO/C nanoflakes arrays exhibited notable high-rate lithium ion storage performance with smaller polarization,better electrochemical reactivity,higher specific capacity(157 mAh g-1 at the current density of 20C)and improved long-term cycling life(96.2% after 6000 cycles at 20C),superior to the unmodified porous LTO arrays counterpart(126 mAh g-1 at 20C and 88.0%after 6000 cycles at 20C).Our work provides a new template for the construction of high-performance high-rate electrodes for electrochemical energy storage.  相似文献   

13.
锂离子电池负极材料Li_(4-x)K_xTi_5O_(12)结构和电化学性能   总被引:1,自引:0,他引:1  
采用固相反应的方法制备了尖晶石型Li4Ti5O12和K掺杂Li4-xKxTi5O12(x=0.02,0.04,0.06)。通过XRD、SEM、BET等对制备材料进行了分析。结果表明,K掺杂没有影响立方尖晶石型Li4Ti5O12的合成,同时也没有改变Li4Ti5O12的电化学反应过程。K掺杂Li4-xKxTi5O12具有比Li4Ti5O12小的颗粒粒径和比Li4Ti5O12大的比表面积、孔容积。适量的K掺杂能够明显改善Li4Ti5O12的电化学性能,尤其是倍率性能,但是过多的K掺杂却不利于材料电化学性能的提高。研究表明,Li3.96K0.04Ti5O12体现了相对较好的倍率性能和循环稳定性。0.5C下,首次放电比容量为161mAh·g-1,3.0和5.0C下,容量保持分别为138和121mAh·g-1。3.0C下,200次循环后容量保持为137mAh·g-1。  相似文献   

14.
A novel electrochemical nanostructured biosensor based on carbon nanotubes (CNTs) has been constructed by magnetic assembly method. The magnetic multi-walled carbon nanotubes (M-MWNTs) were prepared by introducing Fe2O3 nanoparticles into the nanotubes. Thus the multilayered functional platform could be assembled with the aid of magnetic field. The horseradish peroxidase (HRP) was employed as a model enzyme to demonstrate the final performance of the nanostructured biosensor. SEM, UV–vis spectroscopy and electrochemical techniques were used for characterization of assembly process. The resulting three-dimensional M-MWNTs/HRP multilayer films have showed satisfactory stability, biocompatibility and electrochemical properties.  相似文献   

15.
Li4Ti5O12溶胶-凝胶法合成及其机理研究   总被引:15,自引:0,他引:15  
The precursors of Li4Ti5O12 were prepared from tetrabutyl titanate and lithium acetate by sol-gel process. The Li4Ti5O12 samples were synthesized by calcining the gel precursors at 400~900 ℃ in air for 6~20 h. Its reaction mechanism was investigated by infrared spectroscopy(IR), thermogravimetry(TG) and X-ray diffraction(XRD). The effects of sinter-temperature, calcination-time and thermal-treatment for the products were discussed. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM). The results showed that the single-phase products were obtained by calcining the gel precursors at 800 ℃ in air for 20 h, the sinter-temperature was lower than that of solid-state method, the particles were narrowly distributed, well crystallized with a size range from 0.3μm to 0.5 μm.  相似文献   

16.
One kind of boron phenolic resin (BPR) was prepared from the solvent-less reaction of resoles with boric acid. X-ray photoelectron spectroscopy (XPS) showed that the reaction degree of boric acid was 83.8%. Multi-walled carbon nanotubes (MWCNTs) were modified by nitric acid, 4,4′-Diaminodiphenyl methane and boric acid. The effect of modification was determined by Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) techniques and XPS. The cure kinetics and thermal behavior of BPR and modified multi-walled carbon nanotubes (m-MWCNTs)/BPR were studied. It was found that the curing apparent activation energy (Ea) decreased with the increasing amount of m-MWCNTs. But there was no obvious change in the orders of curing reactions. The results of TGA showed that 1.0 wt% of the m-MWCNTs could increase the thermal decomposition temperature (Td) and the char yield of m-MWCNTs/BPR nanocomposites by 36.7 °C and 6.2%. These critical enhancements will definitely help to attract more researches on this area.  相似文献   

17.
Lithium manganese oxide powders were prepared via combustion reaction. Structural characterization of the powder using X-ray diffraction and scanning electron microscopy confirmed the formation of a LiMn2O4 nanosized powder. LiMn2O4 films were prepared by spin coating using 80 wt% of oxide, 15 wt% of polyaniline (PAni) as an electronic conductor and 5 wt% of polyvinylidene (PVDF) as a binder in N.N.-dimethyl acetamide. A Coulombic efficiency of 96% confirmed the electrochemical stability of the composite. The variation in impedance as a function of the lithium intercalation/deintercalation process reflected the interaction between the oxide and/or polyaniline particles at a high frequency range, and a diffusion tendency was observed at medium and low frequency ranges. The capacity values of the composite electrodes relative to the LiMn2O4 mass were 178.6/177.5 and 145/140 mAh g−1 for the first and 25th charge/discharge cycles, respectively.  相似文献   

18.
以醋酸锂和钛酸四丁酯为原料,以乙醇为溶剂,采用溶胶-凝胶法制备Li4Ti5O12;以苯胺、过硫酸铵为原料,以盐酸为溶剂,采用原位聚合法合成Li4Ti5O12-聚苯胺复合材料。采用X-射线衍射、红外光谱和电化学测试等对复合材料进行了表征。结果表明,聚苯胺的加入明显提高了Li4Ti5O12的电子导电性能,Li4Ti5O12-PAn复合材料具有比Li4Ti5O12更好的高倍率性能和循环稳定性。0.1C和2.0C放电时Li4Ti5O12-PAn的放电容量达到了191.3和148.9 mAh·g-1,经80次循环后二者平均每次循环容量衰减率分别为0.13%和0.61%。  相似文献   

19.
Solid-state thin-film lithium-ion battery of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 is prepared by spray technique using Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both electrolyte and substrate. The thin-film battery is heat-treated by rapid thermal annealing. Phase identification, morphology and electrochemical properties of the sintered pellets and thin-film battery are investigated by X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge experiments, respectively. The results show that LiMn2O4 films with some pores are well deposited on the surface of Li1.3Al0.3Ti1.7(PO4)3 sintered pellet. The discharge current density and temperature have considerable effect on discharge capacity of the thin-film battery. LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 thin-film battery can be easily cycled with a capacity loss of 0.213% per cycle when 50 cycles are carried out.  相似文献   

20.
The garnets Li3Nd3W2O12 and Li5La3Sb2O12 have been prepared by heating the component oxides and hydroxides in air at temperatures up to 950 °C. Neutron powder diffraction has been used to examine the lithium distribution in these phases. Both compounds crystallise in the space group with lattice parameters a=12.46869(9) Å (Li3Nd3W2O12) and a=12.8518(3) Å (Li5La3Sb2O12). Li3Nd3W2O12 contains lithium on a filled, tetrahedrally coordinated 24d site that is occupied in the conventional garnet structure. Li5La3Sb2O12 contains partial occupation of lithium over two crystallographic sites. The conventional tetrahedrally coordinated 24d site is 79.3(8)% occupied. The remaining lithium is found in oxide octahedra which are linked via a shared face to the tetrahedron. This lithium shows positional disorder and is split over two positions within the octahedron and occupies 43.6(4)% of the octahedra. Comparison of these compounds with related d0 and d10 phases shows that replacement of a d0 cation with d10 cation of the same charge leads to an increase in the lattice parameter due to polarisation effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号