首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MoS2 nanosheet arrays supported on hierarchical nitrogen-doped porous carbon(MoS2@C)have been synthesized by a facile hydrothermal approach combined with high-temperature calcination.The hierarchical nitrogen-doped porous carbon can serve as three-dimensional conductive frameworks to improve the electronic transport of semiconducting MoS2.When evaluated as anode material for lithium-ion batteries,the MoS2@C exhibit enhanced electrochemical performances compared with pure MoS2 nanosheets,including high capacity(1305.5 mA h g-1 at 100 mA g-1),excellent rate capability (438.4 mA h g-1 at 1000 mA g-1).The reasons for the improved electrochemical performances are explored in terms of the high electronic conductivity and the facilitation of lithium ion transport arising from the hierarchical structures of MoS2@C.  相似文献   

2.
通过溶液水解反应在氧化石墨烯表面引入氧化锡(Sn O2)纳米颗粒,再经过自组装作用形成具有三维结构的氧化锡/石墨烯水凝胶(Sn O2-GH)负极材料。其中三维多孔的石墨烯水凝胶为碳质缓冲基体,Sn O2纳米颗粒为活性物质,其颗粒尺寸为2-3 nm,均匀分布在石墨烯层上,担载量可以达到54%(w,质量分数)。直接将该材料用作锂离子电池负极时,在5000 m A?g~(-1)的大电流密度下循环60次容量稳定在500 m Ah?g~(-1),电流减小到50 m A?g~(-1)循环80次后容量仍高达865 m Ah?g~(-1)。这些优异的循环稳定性和大电流充放电性能主要得益于三维石墨烯水凝胶的疏松、多孔结构和良好的导电性。石墨烯水凝胶能够提高电极比表面积,保证电解液对电极的浸润程度;内部空隙能够为锂离子的传输提供快速通道,缩短离子传输距离和时间。同时丰富的内部空间能够有效避免Sn O2纳米颗粒团聚,缓冲Sn O2巨大体积膨胀,维持电极结构的稳定性,是一种非常适于大电流充放电的锂离子电池负极材料。  相似文献   

3.
制备了一种空心碳球负载二硫化硒(SeS2@HCS)复合材料作为锂离子电池正极材料。通过扫描电子显微镜(SEM),X射线衍射(XRD)以及氮气吸脱附测试(BET)等对产物形貌、组成和结构进行了表征。实验结果显示,采用模板法结合化学聚合法可以合成形貌均一、单分散的空心碳球;其直径约为500 nm,壁厚约为30 nm。进一步采用熔融灌入法可以得到空心碳球负载二硫化硒复合材料。将所制备复合材料组装成电池进行电化学性能测试,与原始二硫化硒块体材料相比,SeS2@HCS复合材料具有更高的初始容量(100 mA·g-1电流密度下,初始放电容量为956 mAh·g-1)和更长的循环寿命(100 mA·g-1电流密度下,循环200圈),同时显示出更优异的倍率性能。研究结果表明该复合材料是一种具有应用前景的新型锂离子电池正极材料。  相似文献   

4.
Nb2O5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb2O5/C based electrode exhibits high rate performance and remarkable cycling ability, showing a high and stable specific capacity of ~380 mAh g-1 at the current density of 50 mA g-1(much higher than the theoretical capacity of Nb2O5).Further more,at a current density of 500 mA g-1,the nanocomposites electrode still exhibits a specific capacity of above 150 mAh g-1 after 100 cycles.These results suggest the Nb2O5/C nanocomposite is a high performance anode material for lithium-ion batteries.  相似文献   

5.
采用氧化铝修饰改性富锂锰基正极材料,探讨了表面活性剂在修饰改性中的作用。利用扫描电子显微镜、X射线衍射仪、透射电子显微镜和电化学性能测试等方法对材料结构和电化学性能进行分析。实验结果表明,十二烷基三甲基溴化铵(DTAB)能使Al_2O_3纳米颗粒均匀包覆在富锂锰基正极材料表面,有效增强了复合材料结构的稳定性。在600 mA·g~(-1)电流密度下,该复合材料的初始放电容量为186mAh·g~(-1)。经过500次循环后,其可逆放电比容量仍高于132 mAh·g~(-1),初始容量保持率高达71%。此外,电压衰退也被有效抑制,复合材料表现出优异的综合电化学性能。  相似文献   

6.
采用同轴静电纺丝法制备了碳包覆纳米SnO2中空纤维超级电容器电极材料.利用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和比表面积分析仪(BET)对材料进行表征.结果表明,纤维呈现中空形貌,平均直径为1 μm; SnO2颗粒均匀分布于碳壳结构中,平均粒径为3-15 nm.材料的比表面积为565 m2·g-1.在三电极体系中,当电流密度为0.25 A·g-1时,电极材料的比容量达397.5 F·g-1;在1.0A·g-1电流密度下,充放电循环3000次后比容量仍保持为初始值的88%.在对称型双电极体系中,电流密度为0.25 A·g-1时,电极材料的比容量达162.0 F·g-1,在1.0 A·g-1电流密度下,充放电循环3000次后比容量仍保持为初始值的84%.  相似文献   

7.
近年来,由于锂资源逐渐紧缺而导致其成本增加,锂离子电池发展受到了限制. 作为一个有潜力的替代者,有着相似电化学机制且成本较低的钠离子电池则发展迅速. 但由于钠离子与锂离子相较有着更大半径,在钠离子脱嵌过程中,对大多数电极材料的晶体结构破坏严重. 因此,开发新型电极材料对钠离子电池的进一步发展尤为重要. 其中,层状钒氧化物作为正极材料被广泛研究. 在这项工作中,作者基于钒氧化物,引入钼元素并与碳复合,首次设计合成了一种新型的碳复合钼掺杂的钒氧化物纳米线电极材料,并获得了优良的电化学性能(在50 mA•g-1的电流密度下,最高放电比容量达135.9 mAh•g-1,并在循环75次后仍有82.6mAh•g-1的可逆容量,容量保持率高达71.8%;在1000mA•g-1的高电流密度下循环并回到50mA•g-1后,可逆放电比容量仍能回复至111.5mAh•g-1). 本工作的研究结果证明,这种具有超大层间距的新型碳复合钼掺杂的钒氧化物纳米线是一种非常有潜力的储钠材料,并且我们的工作为钠离子电池的进一步发展提供了一定的理论基础.  相似文献   

8.
SnO2 is considered a promising anode material for sodium-ion batteries due to its high theoretical capacity and low cost.However,the poor electrical conductivity and dramatic volume variation during cha rge/discharge cycling is a major limitation in its practical applicability.Here we propose a simple onepot spray pyrolysis process to construct unique pomegranate-like SnO2/rGO/Se spheres.The ideal structural configuration of these architectures was effective in alleviating the large volume variation of SnO2,besides facilitating rapid electron transfer,allowing the devised anode to exhibit superior sodium sto rage performances in terms of capacity(506.7 mAh/g at 30 mA/g),cycle performance(397 mAh/g after100 cycles at 50 mA/g) and rate capability(188.9 mAh/g at an ultrahigh current density of 10 A/g).The experimental evidence confirms the practical workability of p-SnO2/rGO/Se spheres in SIBs.  相似文献   

9.
刘贵昌  申晓晓  王立达 《电化学》2013,19(2):169-173
应用水热法分解葡萄糖制作锂离子电池碳包覆锡负极. 充放电测试表明,添加5%(by mass)乙炔黑导电剂的该电极初始放电比容量达967 mAh.g-1,经50周循环其放电比容量仍保持362 mAh.g-1,远高于锡电极的比容量(50周循环166 mAh.g-1). 碳包覆可防止锡粉团聚,降低锡的不可逆容量损失. 而添加乙炔黑可降低碳包覆电极与电解液间的交流阻抗,改善电极内部锂离子及电子的传导通道,从而也提高了该电极的初始放电比容量.  相似文献   

10.
Spherical Li-rich lithium manganese oxide(LMO) spinel material was synthesized by an ion implanted method assisted by polyalcohol doped with Niobium and Phosphate simultaneously.The material was characterized by scanning electron microscopy,X-ray diffraction and BET specific surface area analysis.The electrochemical performances were investigated with galvanostatic techniques and cyclic voltammetry.The synthesis process was investigated with TG/DSC.The results show that the lithium ion can be immersed into the pore of manganese dioxide at a low temperature with the ion implanted method.The prepared materials have a higher discharge capacity and better crystallization than those prepared by solid phase method.The doped Nb can improve the capacity of the Li-rich LMO spinel and reinforce the crystal growth along(111) and(400) planes.The crystal grains show circular and smooth morphology,which makes the specific surface area greatly decreased.Phosphate-doped LMO spinel exhibits good high-rate capacity and structure stability.The prepared Li_(1.09)Mn_(1.87)Nb_(0.031)O_(3.99)(PO_4)_(0.021)delivers a discharge capacity of 119mAhg~(-1) at 0.2C(1C=148mAg~(-1)) and 112.8 mAhg~(-1) at 10 C,the discharge capacity retention reaches 98% at 1 ℃ after 50 cycles at 25 ℃ and 94% at 55 ℃.  相似文献   

11.
李雪  龚正良 《电化学》2020,26(3):338
锂硫电池由于具有高的理论比能量引起了广泛关注,然而传统液态锂硫电池由于多硫化物的“穿梭效应”以及安全问题而限制了其应用,全固态锂硫电池可显著提高电池安全性能并有望解决多硫化物的穿梭问题. 本文采用传统的溶液浇铸法制备了具有不同的[EO]/[Li+]的PEO-LiTFSI聚合物电解质,并将其应用于锂硫电池. 研究发现,虽然[EO]/[Li+] = 8的聚合物电解质具有更高的离子电导率,但是[EO]/[Li+] = 20的电解质与金属锂负极间的界面阻抗更低,界面稳定性更好. Li|PEO-LiTFSI([EO]/[Li+]=20)|Li对称电池在60 °C,电流密度为0.1 mA·cm-2时可稳定循环超过300 h,而Li|PEO-LiTFSI ([EO]/[Li+]=8)|Li对称电池循环75 h就出现了短路现象. 基于PEO-LiTFSI([EO]/[Li+]=20)电解质的锂硫电池首圈放电比容量为934 mAh·g-1,循环16圈后放电比容量为917 mAh·g-1以上. 而基于PEO-LiTFSI ([EO]/[Li+]=8)电解质的锂硫电池,由于与锂负极较低的界面稳定性不能够正常循环,首圈就出现了严重过充现象.  相似文献   

12.
Hollow Fe_3O_4(H-Fe_3O_4) microspheres were fabricated through a facile one-step solvothermal synthesis,which was performed in an ethylene glycol(EG)–diethylene glycol(DEG) mixed solvent using polyethylene glycol(PEG) as the stabilizer. The addition of DEG increased the viscosity of the system,which caused the Fe_3O_4 primary crystal to aggregate slower and the morphological yield to approach nearly 100%. The as-prepared hollow Fe_3O_4 microspheres show promise for application in lithium ion battery anodes and showed a reversible specific capacity of 453.3 mAh g~(-1) after 50 cycles at 100 mA g~(-1).  相似文献   

13.
由于具有高安全性和优异的循环稳定性,二氧化钛(TiO2)作为负极材料被广泛地应用于锂离子电池领域。但是较差的导电性和离子传输速率限制了TiO2的进一步应用和发展。鉴于此,我们以花状NH2-MIL-125 (Ti)为前驱体和硬模板,成功合成出了具有花状结构的超细纳米TiO2/多孔氮掺杂碳片(N-doped porous carbon)复合物(记为FL-TiO2/NPC)。过程中所制备的纳米TiO2-金属有机构架(Ti-MOF)展现出由二维褶皱多孔纳米片堆积、组装而成的花状结构。一方面,二维褶皱纳米片包含TiO2纳米颗粒可以增大活性物质与电解液的接触面积;另一方面,氮掺杂多孔碳基体可以提高整体复合物的导电性和结构完整性。将所获得的FL-TiO2/NPC作为负极组装成的锂半电池, 在0.5 A·g-1、300圈后仍有384.2 mAh·g-1以及在1 A·g-1、500圈仍有279.1 mAh·g-1的比容量。进一步性能测试表明,在2 A·g-1、2000圈长循环测试后,其仍能保持256.5 mAh·g-1的比容量和接近100%的库伦效率。该优异的电化学活性和稳定性主要起源于材料独特的花状结构。我们的合成策略为今后制备高储锂性能的金属氧化物/多孔氮掺杂碳负极提供了一种新的思路。  相似文献   

14.
锂硫电池具有理论比容量高(1675 m Ah·g~(-1))、能量密度高(2600 Wh·kg~(-1))、环境友好、价格低廉等性质,是一种高性能的新型储能电池。这些性能使其在电动汽车和便携式设备领域具有重要意义。然而,快速的容量衰减以及较差的循环性能,使锂硫电池还达不到商业应用的要求。本文全面总结了锂硫电池的最新研究进展,详细阐述了锂硫电池的正极、电解质、隔膜以及负极保护,分析了现有锂硫电池存在的缺陷和问题。最后,对锂硫电池未来的发展方向进行了展望。  相似文献   

15.
Antimony-based materials have become promising anodes within lithium-ion batteries(LIBs)due to their low cost and the high theoretical capacity.However,there is a potential to further enhance the electrochemical performance of such antimony-based materials.Herein,Sb2Se3@C nanofibers(Sb2Se3@CNFs)are designed and obtained via a novel electrospinning method.Upon electrochemically testing as an anode within LIBs,the Sb2Se3@CNFs(annealed at 600℃)delivers a remarkably good cycling performance of 625 mAh/g at 100 mA/g after 100 cycles.Moreover,it still remains at 490 mAh/g after 500 cycles with an applied current density of 1.0 A/g.The excellent performance of the Sb2 Se3@CNFs can be attributed to the fact that the N-doped C matrices not only remit the volume expansion of materials,but also enhance the electrical and ionic conductivity thusly increasing the lithium-ion diffusion.The obtained Sb2Se3@CNFs are promising anode for LIBs in the future.  相似文献   

16.
采用静电纺丝技术制备出CaSnO3纳米纤维(CaSnO3 NFs)并作为模板,再经表面原位聚合酚醛树脂和碳化处理制得碳包覆CaSnO3纳米纤维(CaSnO3@C NFs)。使用X射线衍射、扫描电子显微镜、透射电子显微镜和X射线光电子能谱对材料的物相组成、形貌和微观结构进行了表征,通过循环伏安、恒电流充放电和交流阻抗谱研究了碳包覆及碳化温度对CaSnO3 NFs负极材料电化学性能的影响。结果显示,碳包覆改性使CaSnO3 NFs的电化学性能得到较大程度的提高,而且随着碳化温度的升高,CaSnO3@C NFs复合电极的比容量先增加后下降,600℃碳化获得的CaSnO3@C NFs?600复合材料具有最好的电化学性能。在0.1 A·g-1的电流密度下,CaSnO3@C NFs?600电极的首圈放电比容量达到1102.2 mAh·g-1,充放电循环100圈后比容量为548.8 mAh·g-1,当电流密度提高到2 A·g-1时,其比容量仍保持在333.5 mAh·g-1。  相似文献   

17.
Biochar derived from reproducible massive biomasses presents the advantages of low cost and renewable resources. In this work aiming to solve the existing problems of the lithium-sulfur battery, sulfur@biochar (S@biochar) composite cathode materials with high capacity and good cycle performance were developed. Specifically, four kinds of biochar prepared from rice husk, miscanthus, fir, and pomelo peel were used as host matrices for the Li-S battery. Among them, the S@biochar derived from rice husk delivered the highest specific capacity and the best cycle stability according to electrochemical tests. To further optimize its performance, we prepared a highly porous rice husk derived biochar (HPRH-biochar) using silica gel as the template. The S@HPRH-biochar composite (60% (w, mass fraction) S) enables the homogeneous dispersion of amorphous sulfur in the carbon matrix and its porous structure could effectively suppress the dissolution of the polysulfide. As a result, its electrochemical performance improved, achieving a high initial charge capacity of 1534.1 mAh·g-1 and maintaining a high capacity of 738.7 mAh·g-1 after 100 cycles at 0.2C (1C corresponds to a current density of 1675 mA·g-1). It also gives a capacity of 485.3 mAh·g-1 at 2.0C in the rate capacity test.  相似文献   

18.
采用简易、温和、实际耐用的水热方法制备了新型三维介孔立方体结构的钴酸锌纳米材料。每个钴酸锌立方体的边长大约在3-4μm之间,并由大量的纳米粒子和密集的孔隙所构成。通过氮吸附/脱附手段测试发现所制备的钴酸锌纳米材料具有较大的比表面积(41.4 m2?g~(-1))和介孔(6.32 nm)特性。使用钴酸锌纳米材料作为锂离子电池负极,金属锂作为正极组装锂电池并测试了材料的储锂性能。研究发现该电极材料在较高的电流密度下循环100周后,仍能呈现较高的可逆容量和超强的循环稳定性。这种优异的储锂性能主要归因于钴酸锌纳米材料的新型结构,这种介孔立方体结构能够加速锂离子的扩散,增加电极与电解液的接触面积并缓解锂离子嵌入/嵌出期间产生的体积膨胀。  相似文献   

19.
利用水热法制备了粒径为90-130 nm的多孔硬碳球, 并通过浸渍与煅烧的方法制备了硬碳球均匀负载纳米氧化镍颗粒(~10 nm)复合材料. 硬碳球的表面官能团和内部的微孔保证了氧化镍颗粒在硬碳上的均匀分布. 在100 mA·g-1的电流密度下, 复合材料电极首次充电比容量高达764 mAh·g-1; 在100 mA·g-1的电流密度下循环100 个周期后电极充电比容量保持在777 mAh·g-1, 容量保持率为101%; 800 mA·g-1电流密度下电极的充电比容量达380 mAh·g-1, 显示复合材料电极具有优异的循环性能和倍率性能. 硬碳的表面官能团和内部微孔为氧化镍提供了优先形核位点, 保证了二者的牢固结合, 使复合材料获得了“协同效应”, 从而使复合电极具备更短的锂离子扩散路径、更高的电导率和更多的锂离子脱嵌位点. 这种方法还可用于制备硬碳/其他金属氧化物复合材料.  相似文献   

20.
作为锂离子电池的理想替代品,钠离子电池因具有能源储备丰富、成本低廉等优点而受到人们的广泛关注。柔性便携式电子产品的发展亟需柔性储能器件的研制。因此,发展一种廉价、高性能的柔性钠离子电池负极材料成了科研工作者的共同目标。在此项工作中,我们通过简单的水热合成和热还原法发展了一种以柔性碳布为基底,与缺氧型的Na2Ti3O7纳米带(NTO)构成三维阵列结构的新型柔性钠离子电池负极材料。复合材料(R-NTO/CC)的导电性和活性位点得到提高,电化学性能也大幅提升,在200 mA·cm-2的电流密度下,实现100 mAh·cm-2的面积比容量,且经过200次循环后仍保留最初电容值的80%。此外,这种电极还具有优良的倍率性能,当电流密度提高到400 mA·cm-2时,仍保持69.7 mAh·cm-2的面积比容量,是未引入氧空位材料的三倍之多。这种三维缺氧的电极材料可有效提高载流子浓度,缩短离子传输通道,从而大幅提升电极的电化学性能。此工作为设计合成高储钠性能的新型的负极材料提供了一种实用有效的策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号