首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
选用聚乙烯-丙烯酸(EAA)为接枝母体,首先摸索出2-乙基-2-恶唑啉阳离子开环聚合的规律,得到高转化率端基为活性翁离子的聚(2-乙基-2-恶唑啉)(PEOX),再与EAA羟基侧基进行接枝反应,考察了开环聚合条件及接枝反应条件对接枝率的影响,在一定的条件下得到了接枝率〉25%的聚乙烯-丙烯酸与聚(2-乙基-2-恶唑啉)的接枝共聚物(EAA-g-PEOX)。该接枝物用于聚对苯二甲酸丁醇酯/聚丙烯(P  相似文献   

2.
选用聚乙烯 丙烯酸 (EAA)为接枝母体 ,首先摸索出 2 乙基 2 唑啉阳离子开环聚合的规律 ,得到高转化率端基为活性离子的聚 ( 2 乙基 2 唑啉 ) (PEOX) ,再与EAA羟基侧基进行接枝反应 ,考察了开环聚合条件及接枝反应条件对接枝率的影响 ,在一定的条件下得到了接枝率 >2 5%的聚乙烯 丙烯酸与聚 ( 2 乙基 2 唑啉 )的接枝共聚物 (EAA g PEOX) .该接枝物用于聚对苯二甲酸丁二醇酯 /聚丙烯 (PBT/PP)共混体系中作相容剂 ,可提高两者的相容性 .  相似文献   

3.
葛学平  白如科 《化学进展》2007,19(9):1406-1412
本文对γ- 射线辐射条件下的活性自由基聚合反应研究及进展进行了综述。虽然γ- 射线辐射引发聚合反应通常是不可控的,但在有机硫化物,如二硫代羧酸酯或三硫代碳酸酯存在下,则成功地实现了可控/活性自由基聚合。聚合过程中聚合物分子量随单体转化率线性增长,不但可控,且分布窄,也可以用于合成嵌段共聚物。有机硫化物对聚合反应控制起着关键性作用,硫化物的结构对于γ- 射线辐射活性自由基聚合行为的影响显著。γ- 射线辐射聚合的突出优点是可在室温或更低的温度下实施,且不需要加入引发剂。在环硫化合物存在下,获得了环形聚合物;而且使热和光敏感的叠氮类单体实现了活性聚合。  相似文献   

4.
The controlled/living radical polymerization of 2‐(N‐carbazolyl)ethyl methacrylate (CzEMA) and 4‐(5‐(4‐tert‐butylphenyl‐1,3,4‐oxadiazol‐2‐yl)phenyl) methacrylate (t‐Bu‐OxaMA) via reversible addition‐fragmentation chain transfer polymerization has been studied. Functional polymers with hole‐ or electron‐transfer ability were synthesized with cumyl dithiobenzoate as a chain transfer agent (CTA) and AIBN as an initiator in a benzene solution. Good control of the polymerization was confirmed by the linear increase in the molecular weight (MW) with the conversion. The dependence of MW and polydispersity index (PDI) of the resulting polymers on the molar ratio of monomer to CTA, monomer concentration, and molar ratio of CTA to initiator has also been investigated. The MW and PDI of the resulting polymers were well controlled as being revealed by GPC measurements. The resulting polymers were further characterized by NMR, UV‐vis spectroscopy, and cyclic voltammetry. The polymers functionalized with carbazole group or 1,3,4‐oxadiazole group exhibited good thermal stability, with an onset decomposition temperature of about 305 and 323 °C, respectively, as determined by thermogravimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 242–252, 2007  相似文献   

5.
Iniferters are initiators that induce radical polymerization that proceeds via initiation, propagation, primary radical termination, and transfer to initiator. Because bimolecular termination and other transfer reactions are negligible, these polymerizations are performed by the insertion of the monomer molecules into the iniferter bond, leading to polymers with two iniferter fragments at the chain ends. The use of well‐designed iniferters would give polymers or oligomers bearing controlled end groups. If the end groups of the polymers obtained by a suitable iniferter serve further as a polymeric iniferter, these polymerizations proceed by a living radical polymerization mechanism in a homogeneous system. In these cases, the iniferters (C S bond) are considered a dormant species of the initiating and propagating radicals. In this article, I describe the history, ideas, and some characteristics of iniferters and living radical polymerization with some iniferters that contain dithiocarbamate groups as photoiniferters and several compounds as thermal iniferters. From the viewpoint of controlled polymer synthesis, iniferters can be classified into several types: thermal or photoiniferters; monomeric, polymeric, or gel iniferters; monofunctional, difunctional, trifunctional, or polyfunctional iniferters; monomer or macromonomer iniferters; and so forth. These lead to the synthesis of various monofunctional, telechelic, block, graft, star, and crosslinked polymers. The relations between this work and other recent studies are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2121–2136, 2000  相似文献   

6.
The 1,1‐diphenylethene (DPE) controlled radical polymerization of methyl methacrylate was performed at 80 °C by using AIBN as an initiator and DPE as a control agent. It was found that the molecular weight of polymer remained constant with monomer conversion throughout the polymerization regardless of the amounts of DPE and initiator in formulation. To understand the result of constant molecular weight of living polymers in DPE controlled radical polymerization, a living kinetic model was established in this research to evaluate all the rate constants involved in the DPE mechanism. The rate constant k2, corresponding to the reactivation reaction of the DPE capped dormant chains, was found to be very small at 80 °C (1 × 10?5 s?1), that accounted for the result of constant molecular weight of polymers throughout the polymerization, analogous to a traditional free radical polymerization system that polymer chains were terminated by chain transfer. The polydispersity index (PDI) of living polymers was well controlled <1.5. The low PDI of obtained living polymers was due to the fact that the rate of growing chains capped by DPE was comparable with the rate of propagation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

7.
Polymacromonomers with polyolefin branches were successfully synthesized by free-radical homopolymerization of polyolefin macromonomer with a methacryloyl end group. Propylene-ethylene random copolymer (PER) with a vinylidene end group was prepared by polymerization using a metallocene catalyst. Then, the unsaturated end group was converted to a hydroxy end group via hydroalumination and oxidation. The PER with the hydroxy end group was easily reacted with methacryloyl chloride to produce methacryloyl-terminated PER (PER macromonomer; PERM). The free-radical polymerization of thus-obtained PERM was done using 2,2′-azobis(isobutyronitorile) (AIBN) as a free-radical initiator. From NMR analyses, the obtained polymers were identified as poly(PERM). Based on gel permeation chromatography (GPC), the estimated degree of polymerization (Dp) of these polymers were about 30. Thus, new class of polymacromonomers with polyolefin branches was synthesized.  相似文献   

8.
贾志峰  陈皞  颜德岳 《化学学报》2005,63(20):1861-1865
由甲基丙烯酸羟丙酯通过自缩合乙烯基氧阴离子聚合(self-condensing vinyl oxyanionic polymerization)制备了端羟基的超支化聚甲基丙烯酸酯. 以氢化钾(KH)和冠醚的复合物为引发剂时, 可以得到高分子量的聚合物. 用1H NMR和13C NMR谱图证实了聚合物的超支化结构. 由于在聚合过程中存在质子转移反应, 引发剂与单体的摩尔比会影响所得聚合物的结构. 超支化聚合物的玻璃化转变温度在58.1~81.4 ℃之间, 且随着引发剂与单体的比例的减小而降低. 当引发剂与单体等摩尔比时, 所得聚合物的支化度为0.49.  相似文献   

9.
2-Vinyloxy ethyl phthalimide (ImVE) was polymerized using 1-(isobutoxy) ethyl acetate as the initiator in the presence of ethyl aluminum dichloride and either ethyl acetate or ethyl benzoate. The resulting polymers have a narrow molecular weight distribution, and their molecular weight can be controlled within a narrow range by varying the monomer and initiator concentrations. Diblock copolymers with n-butyl vinyl ether can also be formed. The behavior of the polymerization is consistent with a living cationic mechanism. A brief comparison of the title system with other initiating systems is also presented. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Phenyl glycidyl ether was found to react with potassium starch alkoxide in dimethyl sulfoxide (DMSO) to give graft polymers in almost quantitative yields, both the monomer and the starch being incorporated completely into the graft polymer. No transfer reactions to monomer or solvent leading to homopolymerization was found. For this reason this system was used as a model for the study of the rate of the graft polymerization of alkylene oxides on starch and other carbohydrates. Comparison of the rates of the graft polymerization of phenyl glycidyl ether on starch alkoxide with that of the homopolymerization by potassium naphthalene in DMSO under comparable conditions showed that the former reaction was much slower. Rates of the graft polymerizations on dextrin and sucrose under comparable conditions, were similar to those obtained with starch. On the other hand, the rates of polymerization on poly(ethylene oxide) alkoxides of different molecular weights were similar to those obtained in the corresponding homopolymerization by potassium naphthalene, showing that neither the molecular weight of the initiator nor the viscosity of the reaction medium were the governing factors. This suggested that the lower rates obtained by using the carbohydrate alkoxides as initiators were connected with the heterogeneity of these reaction systems, the polymeric alkoxide being insoluble in DMSO. The systematic study carried out on the homopolymerization by potassium naphthalene in DMSO showed that the effective initiator was dimsyl anion obtained by interaction of potassium naphthalene with DMSO. The reaction was bimolecular, being first order to monomer and to initiator. The molecular weights increased with increasing monomer concentration and decreasing catalyst concentration, in accordance with a “living” polymerization system.  相似文献   

11.
Abstract

Atom transfer radical polymerization (ATRP) of styrene (St) proceeded using 5‐chloromethyl‐2‐hydroxy‐benzaldehyde as initiator, CuCl as catalyst, and N,N,N′,N′,N′‐pentamethyldiethyltriamine (PMDETA) as ligand. The results show that the polymerization is a first order reaction with respect to monomer concentration. The polymerization displayed living character as evidenced by a liner increase of monomer weight with conversation and a relatively narrow distribution (M n/M w ranges from 1.25 to 1.50). The end structure of PSt was analyzed by 1H‐NMR, and PSt initiated MMA to form block copolymer (PSt‐b‐PMMA), which also proved that the polymerization could be controlled. The effects of reaction temperature and monomer to initiator mole ratio on the polymerization displayed living character were discussed.  相似文献   

12.
Thermosensitive‐thermochromic pigments are classified as smart materials capable of detecting and/or responding to environmental stimuli, and specifically in this study, changes in temperature that induce a change in the color of the material. This study aims to obtain nanoparticles of poly(styrene‐co‐butyl acrylate) and poly(styrene‐co‐methyl methacrylate), containing thermosensitive‐thermochromic pigments that are incorporated into the monomer droplets in miniemulsion polymerization. Miniemulsion polymerization has the advantage that the pigment particles can be dispersed directly in the monomer droplets and are encapsulated when the miniemulsion droplets are polymerized. Using controlled/living radical polymerization (or Reversible Deactivation Radical Polymerization), it is possible to produce polymers with better control of microstructure and narrower molecular weight distributions. Nitroxide‐mediated polymerization (NMP) is conducted using the BlocBuilder initiator, as well as a conventional free radical polymerization (FRP) using potassium persulfate (KPS) and 2,2‐azobis(2‐methylpropionitrile) (AIBN). Stable latexes containing the thermosensitive‐thermochromic pigments are obtained by both NMP and FRP. Films are made from the latexes and shown to exhibit thermochromic behavior.  相似文献   

13.
Hyperbranched polymethacrylates were prepared by means of oxyanionic vinyl polymerization of commercially available monomers, including hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEG‐MA). Hyperbranched polymethacrylates with high molecular weight were obtained with the complex of potassium hydride and 18‐crown‐6 as the initiator. The effect of 18‐crown‐6 is very important, and only oligomer can be obtained in the polymerization without 18‐crown‐6. The molecular structure of the hyperbranched polymers was confirmed with 1H NMR and 13C NMR spectra. The ratio of initiator to monomer significantly affects the architecture of the resultant polymers. When the ratio of initiator to monomer equals 1 in the oxyanionic vinyl polymerization of HEMA, the degree of branching of the resulting polymer was calculated to be around 0.49. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3502–3509, 2005  相似文献   

14.
Group transfer polymerization was used to synthesize several series of hydrophilic random and model networks. Cationic random networks were prepared both in bulk and in tetrahydrofuran (THF) using a monofunctional initiator and simultaneous polymerization of monomer and branch units, while a bifanctional initiator was employed in THF for the synthesis of model networks comprising basic or acidic chains. Upon polymerization of the monomer, the latter initiator gives linear polymer chains with two “living” ends, which are subsequently interconnected to a polymer network by the addition of a branch unit. Homopolymer network star polymers were also synthesized in THF by a one‐pot procedure. The synthesis involved the use of a monofunctional initiator and the four‐step addition of the following reagents: (i) monomer, to give linear homopolymers; (ii) branch unit, to form “arm‐first” star polymers; (iii) monomer, to form secondary arms and give “in‐out” star polymers; and, finally (iv) branch unit again, to interconnect the “in‐out” stars to networks. Different networks were prepared for which the degree of polymerization (DP) of the linear chains between junction points was varied systematically. For all networks synthesized, the linear segments, the “arm‐first” and the “in‐out” stars were characterized in terms of their molecular weight (MW) and molecular weight distribution (MWD) using gel permeation chromatography (GPC). The degrees of swelling of both the random and model networks in water were measured and the effects of DP, pH, and monomer type were investigated.  相似文献   

15.
In order to determine the effect of functional structure of ester groups on the stereoregularity of polymers, polymerization of N-[btilde]-methacryloyloxyethyl type monomers containing nucleic acid bases was made by using a free-radical initiator. From the NMR spectrometric determination of the stereoregularity of the polymers obtained, it was found that for polymerization of the monomer with adenine as the side group in dimethyl sulfoxide solution, syndiotactic placement appears to be favored by the additional enthalpy of activation required for isotactic placement.  相似文献   

16.
This investigation reports preparation of tailor‐made poly(meth)acrylates bearing adamantyl group using atom transfer radical homo and copolymerization via initiator as well as via monomer approach. The ATRP of methyl methacrylate was investigated using different initiators having adamantyl group (like AdMBr or AdBr) as well as conventional EBiB initiator and CuBr as catalyst in combination with PMDETA as ligand. It was observed that the incorporation of the bulky adamantyl group increased the rate of polymerization. The polymerization proceeded through first‐order kinetics and molecular weights increased linearly with conversion, close to the targeted molecular weights. The living nature of the end‐group was confirmed by MALDI‐TOF‐mass spectrometry and chain extension experiment. The homopolymerization of adamantyl methyl acrylate (AdMA) and its copolymerization with MA was successfully carried out using methylbromopropionate (MBrP) as initiator and CuBr/dNbpy as the catalyst. Interestingly, the resultant poly(meth)acrylates bearing the adamantyl group had excellent thermal stability and much better thermal stability than the similar polymers without adamantyl group as evidenced from thermogravimetry analysis (TGA) and isothermal TGA studies. Importantly, incorporation of adamantyl group “adamantly” increases rate of polymerization, thermal stability, and glass transition temperature of the polymers. All the polymers were characterized by NMR, MALDI‐TOF‐MS, DSC, and TGA analysis. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7101–7113, 2008  相似文献   

17.
Amphiphilic initiator systems consisting of bulky nucleophiles as propagating species and bulky electrophiles (Lewis acids) as monomer activators bring about high-speed living anionic polymerization of polar vinylic and heterocyclic monomers to give narrow molecular weight distribution (MWD) polymers.  相似文献   

18.
3‐Hydroxypropyl acrylate, 4‐hydroxybutyl acrylate, 2‐methyl‐3‐hydroxypropyl acrylate, 2‐hydroxypropyl acrylate, neopentyl glycol acrylate, glyceryl acrylate, and dihydroxyhexyl acrylate were prepared via transacylation reaction of methyl acrylate with diols and triols catalyzed by Candida antarctica lipase B. After removal of the enzyme by filtration and the methyl acrylate by distillation, the monomers were polymerized via free radical polymerization (FRP) with azobisisobutyronitrile as initiator and nitroxide mediated polymerization (NMP) employing Blocbuilder? alkoxyamine initiator and SG‐1 free nitroxide resulting in hydroxy functional poly(acrylates). The NMP kinetics are discussed in detail. In addition, the polymers obtained by FRP and NMP are compared and the results are related to the amount of bisacrylates that are present in the initial monomer mixtures resulting from the transacylation reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2610–2621, 2010  相似文献   

19.
Aluminum porphyrin is an excellent initiator for the living polymerizations of a wide variety of monomers such as epoxide, β-lactone, δ-lactone, ε-lactone, and lactide, and also for the alternating copolymerization of epoxide and cyclic acid anhydride or carbon dioxide, to give polymers and copolymers with narrow molecular weight distribution. Aluminum porphyrin was recently found to initiate also the living polymerization of methacrylic ester. In the polymerizations of epoxides and lactones initiated with aluminum porphyrin in the presence of an appropriate protic compound, polymers with narrow molecular weight can be obtained with the number of the polymer molecules more than those of the initiator. This fact demonstrates the “immortal” nature of the polymerization due to unusual reactivities of aluminum prophyrin.  相似文献   

20.
Anionic polymerization of lauryl methacrylate (LMA) with 1,1‐diphenylhexyl lithium in tetrahydrofuran (THF) at ?40 °C resulted in a multimodal and broad molecular weight distribution (MWD) with poor initiator efficiency. In the presence of additives such as dilithium salt of triethylene glycol (G3Li2), LiCl, and LiClO4, the polymerization resulted in polymers with a narrow MWD (≤ 1.10). Diblock copolymers of methyl methacrylate (MMA) and LMA were synthesized by anionic polymerization using DPHLi as initiator in THF at ?40 °C with the sequential addition of monomers. The molecular weight distribution of the polymers was narrow and without homopolymer contamination when LMA was added to living PMMA chain ends. Diblock copolymers with broad/bimodal MWD were obtained with a reverse‐sequence monomer addition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 875–882, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号