首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of poly(vinyl chloride) (PVC) filled with micron‐ and nanosized calcium carbonate (CaCO3) particles were prepared by solution blending. The influences of particle size and CaCO3 content on the microstructure and mechanical properties of the PVC composites were investigated by means of polarized optical microscopy and mechanical testing. The polarized optical microscope images revealed that nanosized CaCO3 particles were more agglomerated than micron‐sized CaCO3 particles and the amount of agglomerates increased with increasing particle content. PVC/CaCO3‐0.22 composites (PVC nanocomposite filled with 220‐nm‐particle‐sized CaCO3) 5 phr CaCO3 content had the maximum tensile strength. The Young's modulus of all composites increased with increasing particle content. The energy at break of all composites showed a decreasing trend as a function of CaCO3 content and varied with particle size.  相似文献   

2.
To study the effect of different surface structures on resultant mechanical and rheological properties, nano-CaCO3 particles were treated with isopropyl tri-stearyl titanate (H928), isopropyl tri-(dodecylbenz-enesulfonyl) titanate (JN198), and isopropyl tri-(dioctylpyrophosphato) titanate (JN114). Scanning electron microscopy (SEM) and dynamic mechanic analysis (DMA), carried out to characterize the effective interfacial interaction between the nano-CaCO3 particles and a poly(vinyl chloride) (PVC) matrix, indicated that JN114 treated nano-CaCO3 particles had the strongest interfacial interaction with a PVC matrix, while H928 treated nano-CaCO3 had the weakest. The rheological and mechanical properties of PVC/nano-CaCO3 composites were investigated as a function of surface structure and filler volume fraction. The tensile yield stress and elongation at break decreased with the increasing of calcium carbonate content while tensile modulus increased. PVC filled with JN114 treated nano-CaCO3 had the highest tensile modulus and tensile yield stress, while those filled with H928 treated nano-CaCO3 had the highest elongation at break at the same filler content. The impact strength of PVC/nano-CaCO3 composites increased with the increasing of CaCO3 content, and PVC composites filled with JN198 treated nano-CaCO3 particle had a higher impact strength than those with JN114 or H928 treated, with the value reaching 23.9 ± 0.7 kJ/m2 at 11 vol% CaCO3, four times as high as that of pure PVC. Rheological properties indicated that a suitable interfacial interaction and a good dispersion of inorganic filler in a PVC matrix could reduce the viscosity of PVC/nano-CaCO3 composites. The interfacial interaction was quantitatively characterized by semiempirical parameters calculated from the tensile strength of PVC/nano-CaCO3 composites to confirm the results from the SEM and DMA experiments.  相似文献   

3.
《Composite Interfaces》2013,20(8-9):659-684
Talc, calcium carbonate (CaCO3), and kaolin hold considerable promise in the development of polymer composites for good mechanical properties and stability. Comparative studies on the usage of these minerals as single fillers in polypropylene (PP) have shown varying degrees of reinforcement due to their differences in terms of particle geometry, surface energy and affinity towards the matrix polymer. In this study, comparisons were made in terms of mechanical, thermal and weatherability properties between hybrid-filler PP composites (i.e. PP filled with either talc–CaCO3 or talc–kaolin hybrid filler combinations), with particular attention directed towards the effect of surface modification of the fillers. The talc/CaCO3 hybrid composites have shown exceptional performance in terms of flexural and impact properties. The contribution of talc in the talc–kaolin hybrid composite system has been significant in terms of enhancing the overall tensile and flexural properties. The ability of silane and titanate coupling agents in boosting the resistance of the composites to severe damage and degradation due to natural weathering has been shown.  相似文献   

4.
Isotactic polypropylene (IPP) and calcium carbonate (CaCO3) nanocomposites were prepared by melt extrusion in a twinscrew extruder. The effect of CaCO3 nanoparticles on the crystallization and thermal conductivity (TC) of PP was studied by thermal analysis (DSC) and thermal conductivity analysis (TCA). The introduction of CaCO3 nanoparticles resulted in an increase in crystallinity. The incorporation of this nanoparticle (up to 15 phr) caused a significant increase of TC of PP, especially for larger filler content. Several models were used for prediction of TC of the nanocomposites. The experimental results had a good correlation with the Ce Wen Nan Model.  相似文献   

5.
The flexural properties of poly-L-lactide (PLLA) and polycaprolactone (PCL) shape memory composites filled with nanometer calcium carbonate (nano-CaCO3) were determined at room temperature. The results showed that with the increase of the nano-CaCO3 weight fraction the flexural moduli and strength of PCL/nano-CaCO3 composites increased roughly linearly and reached a maximum at the filler content of 2%, while the flexural strength of the composites decreased. The flexural moduli and strength of the composites decreased roughly linearly with increasing PLLA/PCL ratio for the PLLA/PCL/nano-CaCO3 composites.  相似文献   

6.
In this study HCl generation of polyvinyl (chloride) (PVC)/SiO2 composites during its combustion was investigated. SiO2 with different particle sizes were used as HCl absorbers and their HCl uptake ability results were compared to that of CaCO3. It was found that the amount of released HCl gas during PVC combustion decreased in the presence of SiO2. The HCl uptake ability of SiO2 improved with decreasing of its particle size. Although thermogravimetric analysis (TGA) results showed that SiO2 particles decreased the first thermal degradation temperature (T onset) of PVC by initiating dehydrochlorination of PVC at lower temperatures, SiO2 particles had more effective HCl uptaking ability than that of CaCO3. Scanning electron microscopy (SEM) micrographs showed that some aggregates whose size was less than 100 nm were formed when Si-25 nm was used as filler. When SiO2 with micron size was added to PVC as filler, more uniform and better distribution of the SiO2 on the surface was observed.  相似文献   

7.
Hydrophobic CaCO3 particles were directly prepared via carbonation of Ca(OH)2 slurry in the presence of sodium oleate at room temperature. Sodium oleate was used to modify the surface property of CaCO3 particles. The measurement of relative contact angle and active ratio indicated that CaCO3 samples were hydrophobic. DTG, FT-IR and TEM analysis of the obtained product indicated that the hydrophobic property was attributed to the deposition of calcium oleate, produced in the reaction mixture, onto the surface of calcium carbonate particles. They were covered on the CaCO3 crystals surface and modified their surface property; at the same time they own CC bonds and could be polymerized or copolymerized later to give a polymeric monolayer.  相似文献   

8.
Propylene‐ethylene copolymer/calcium carbonate (CaCO3) composites (weight ratio=50/50) toughened with high density polyethylene (HDPE) were prepared using a twin‐screw extruder; the HDPE content in composites was in the range of 0–4 wt.%. The notched impact strength of propylene‐ethylene copolymer/CaCO3 composites with 1.5 wt.% HDPE was 46% higher than that of propylene‐ethylene copolymer/CaCO3 composites. Differential scanning calorimetry (DSC) experiments showed that good miscibility between propylene‐ethylene copolymer and HDPE enhanced the interpenetration of the macromolecules located in the interface. It was shown that debonding of the small HDPE particles within the propylene‐ethylene copolymer matrix resulted in the formation of small voids; the subsequent plastic deformation of the propylene‐ethylene copolymer matrix next to the voids thinned the ligaments and led to large energy consumption.  相似文献   

9.
Composites of polyamide 66 (PA66)/maleic anhydride grafted poly(ethylene-co-octene) (POE-g-MAH)/nano-calcium carbonate (nano-CaCO3) and PA66/POE-g-MAH/talc were prepared by a one-step blending method. Morphology, crystallization, and mechanical properties of the composite materials were characterized with respect to different amounts of both inorganic fillers, nano-CaCO3 and talc. Results showed that the tensile yield strength and tensile modulus of the composites were increased remarkably with introduction of nano-CaCO3 or talc, but the notched impact strength was significantly lowered for both kinds of composites. Mechanical properties exhibited little difference between the PA66/POE-g-MAH/nano-CaCO3 and PA66/POE-g-MAH/talc composites both for the different shapes and sizes of nano-CaCO3 and the flake-like talc. Results of scanning electron microscopy exhibited agglomeration of the fillers. Differential scanning colorimetry analysis suggested that introduction of the inorganic fillers cause the crystallinity of PA66 to decrease by heterogeneous nucleation. The study provides a basic investigation on polymer/elastomer/rigid filler composites.  相似文献   

10.
《Composite Interfaces》2013,20(3):179-189
Thermal properties and degradation of polyethylene LDPE (nano)composites were investigated by isoconversional thermogravimetric analysis in air and nitrogen atmosphere by applying the Kissinger–Akahira–Sunose method. Low-density polyethylene (LDPE) composites containing 3 wt.% nanofiller Cloisite 20A and 4, 6, and 8 wt.% of natural zeolite were prepared using extrusion/injection moulding. The parameters of thermal stability of the samples were determined i.e. onset temperature of the degradation (T90), which exhibit initial mass loss (10 mass %) and maximum loss rate temperature (Tmax). Also, activation energy (Ea) of samples was calculated and interpreted in terms of thermal degradation mechanisms. Under nitrogen, the thermal degradation of LDPE (nano)composites follows a random scission pathway but it was retarded and slowed by the presence of the fillers. The results show that thermo-oxidative degradation of studied (nano)composites is induced at lower temperatures and appears as much more complex and multi-stage process.  相似文献   

11.
Droplets of several micrometers in size can be formed in aqueous solution by atomization under ultrasonic irradiation at 2 MHz. This phenomenon, known as atomization, is capable of forming fine droplets for use as a reaction field. This synthetic method is called SARM (sono atomization for reactive mixing). This paper reports on the synthesis of a novel amorphous calcium carbonate formed by SARM. The amorphous calcium carbonate, obtained at a solution concentration of 0.8 mol/dm3, had a specific surface area of 65 m2/g and a composition of CaCO3•0.5H2O as determined using thermogravimetric/differential thermal analysis (TG-DTA). Because the ACC had a lower hydrate composition than conventional amorphous calcium carbonate (ACC), the ACC synthesized in this paper was very stable at room temperature.  相似文献   

12.
A sandbag microstructure was constructed in Polyamide 6(PA6)/ethylene-propylene-diene terpolymer (EPDM)/nanometer calcium carbonate (nano-CaCO3) ternary composites by the addition of maleinated EPDM (EPDM-g-MA) to reduce the interfacial tension between EPDM and PA6 and EPDM and nano-CaCO3. Scanning electron microscopy (SEM) observation and differential scanning calorimetry (DSC) analysis revealed that the microstructure of the ternary composites evolved from the initial separated EPDM and nano-CaCO3 dispersion structure to the sandbag structure and finally to the separated dispersion structure again with the increase of EPDM-g-MA content in the elastomer phase. The mechanical results showed the composites with the sandbag microstructure exhibited excellent toughness and stiffness.  相似文献   

13.
A sandbag microstructure was constructed in polyamide 6 (PA6)/ethylene– propylene–diene terpolymer (EPDM)/nanometer calcium carbonate (nano-CaCO3) ternary composites by the addition of maleinated EPDM (EPDM-g-MA) to reduce the interfacial tension between EPDM and PA6 and EPDM and nano-CaCO3. Scanning electron microscopy observation and differential scanning calorimetry analysis revealed that the microstructure of the ternary composites evolved from the initially separated EPDM and nano-CaCO3 dispersion structure to the sandbag structure and finally to the separated dispersion structure again with the increase of EPDM-g-MA content in the elastomer phase. The mechanical results showed the composites with the sandbag microstructure exhibited excellent toughness and stiffness.  相似文献   

14.
Pimelic acid (PA) was used as a new surface modifier for CaCO3. The effects of PA treatment on the crystallization, morphology, and mechanical properties of PP/CaCO3 composites were investigated. Fourier transform infrared (FTIR) spectroscopy analysis revealed that PA bonded to CaCO3 and formed a calcium pimelate surface layer after reacting with CaCO3. The results of wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and polarized light microscopy (PLM) proved that the PA treated CaCO3 induced a large amount of β -iPP and decreased the spherulitic size of PP. The results of scanning electron microscopy (SEM) showed that the PA treatment enhanced the interfacial adhesion between the filler and the matrix, indicating the improvement of the compatibility between PP and CaCO3. The toughness of the composites was improved by the more ductile β -form spherulites. When 1% of PA treated CaCO3 was added, the notched impact strength reached its maximum, a value of 19.79 kJ/m2, which was 3.64 times greater than that of the pure PP.  相似文献   

15.
Calcium carbonate (CaCO3)/iron oxide composites were synthesized through a simple one‐step impregnation procedure by mixing iron oxide nanoparticles (γ‐Fe2O3 and Fe3O4) of about 6 nm in size and CaCO3 microparticles (Φ = 2 µm–8 µm, vaterite phase). The morphology and structural properties of CaCO3, iron oxide nanoparticles and CaCO3/iron oxide composites were characterized as a function of low iron content (0 %w to 3.2 %w) by scanning electron microscopy and transmission electron microscopy, X‐ray diffraction and 57Fe Mössbauer spectrometry. The phase transformations induced by thermal treatment and laser irradiation were investigated in situ by X‐ray thermodiffraction (XRTD) and Raman spectroscopy. We have shown that the phase transformations observed by XRTD are also observed under laser irradiation as a consequence of the absorption of the laser irradiation by iron oxide nanoparticles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Electromagnetic wave absorbing properties of absorbing composites depend on the dielectric and magnetic loss generally. In this paper, using Fe3O4-coated amorphous carbon nanotubes (ACNTs-Fe3O4) fabricated using a chemical synthesis–hydrothermal treatment method as an absorber and polyvinyl chloride (PVC) as a matrix, electromagnetic and mechanical properties of ACNT-Fe3O4/PVC composite were investigated. The results showed that the dielectric and magnetic losses of ACNT-Fe3O4/PVC composite were significantly enhanced in 8.2–12.4 GHz compared to ACNT/PVC composite, which improved absorbing properties, while slightly changing the mechanical properties.  相似文献   

17.
《Composite Interfaces》2013,20(8):511-522
Polymer composites, such as those composed of a polyester, glass fibers (GFs), and mineral fillers (e.g. CaCO3), pose a threat to the environment because of the growing amount of residues and due to difficulties in their recycling. Therefore, we have studied effects of incorporation of (polyester?+?GFs) waste material as a filler into virgin composites. Two types of polyester?+?glass fiber composites were developed using hot compression molding, one of them with recycled (polyester?+?glass fiber) material obtained via knife or ball milling; the other, a control group, contained CaCO3, a traditional filler in this field. Dynamic friction and wear rate were determined using a pin-on-disk tribometer and a stylus profilometer, respectively. As expected, the presence of the residues significantly decreases dynamic friction and wear rate when compared to CaCO3, since the main constituent of the residues is a polymeric material. Thus, polyester?+?glass fiber composite residues are a candidate for a partial substitution of CaCO3. This should lower the environmental contamination caused by discarding the residues as well as provide composites with lower wear rates.  相似文献   

18.
Three methods were used to modify nano‐SiO2 particles with various interfaces and interfacial interactions between the particles and Poly(vinyl chloride) (PVC) matrix. The experimental results show that direct surface treatment of nano‐SiO2 particles with a silane coupling agent (KH‐550) is not effective for improving the mechanical properties of PVC/SiO2 composites. Both ultrasonic oscillations and high energy vibromilling improve the interfacial interactions between SiO2 particles and PVC matrix. With these methods, the aggregation of SiO2 particles was inhibited and a good dispersion of SiO2 particles in PVC matrix was obtained, which improved the mechanical properties of the PVC/SiO2 composite. The mechanical properties of the PVC/SiO2 composite with high energy vibromilling modified SiO2 particles were remarkably improved. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), dynamic mechanical analysis (DMA), and theoretical calculations demonstrate these improvements.  相似文献   

19.
Plasticized PVC formulated with different kinds of normally used plasticizers, including bis(2-ethylhexyl) phthalate (DOP), dioctyl terephthalate (DOTP), acetyl tri-n-butyl citrate (ATBC), acetyl trioctyl citrate (ATOC), trioctyl trimellitate (TOTM), and a new vegetable devived plasticizer, isosorbide ester (ID-37), were prepared by a melt blending method. The effect of plasticizer on the thermal degradation behavior of plasticized PVC was investigated by thermal gravimetric analysis (TGA). The activation energies were calculated by three well known methods, developed by Flynn-Wall-Ozawa (FWO), Friedman and Kissinger, respectively. The TGA conducted in N2 atmosphere showed that the type of plasticizer had an obvious influence on the thermal stability of plasticized PVC. It was found that the peak temperatures (TP) of the thermal degradation processes shifted to higher temperature with the increase of the heating rate, with two processes being shown. The activation energy of the first thermal decomposition process (E1), calculated by the Kissinger method, was between 118 and 130 kJ/mol, while the activation energy of the second thermal decomposition process (E2) was between 261 and 305 kJ/mol, except 499 kJ/mol for the PVC/TOTM formulation. The corresponding values of E1 and E2 obtained by the Flynn-Wall-Ozawa method were similar to the above data. E of the sample with TOTM also showed a higher value than the others; the results demonstrated that the PVC plasticized with TOTM was more thermally stable than with the others. The activation energies for certain conversion degrees were calculated by the Friedman method and the FWO method. The value of activation energy for 20%, 50%, and 80% conversion calculated by the Friedman method, exhibited an apparent difference from that calculated by the Flynn-Wall-Ozawa method; the results showed that the value of E obtained by the Friedman method was much more reasonable than that obtained by the Flynn-Wall-Ozawa method.  相似文献   

20.
ABSTRACT

This work investigated the mechanical, physical, morphological, and electrical (volume) resistivity properties of radiation-vulcanized natural rubber latex (RVNRL) with additions of waste eggshell (WES) powder, which contained primarily CaCO3 (calcite). The results showed that increasing gamma irradiation doses from 0 to 30?kGy in 10-kGy increments led to decreases in the swelling ratio and elongation at break but increases in the crosslink density, tensile modulus at 500% elongation, and tensile strength of the composites. The results also suggested that increasing the WES contents from 0 to 2, 4, or 6 parts per hundred parts of rubber by weight (phr) in the composites improved the tensile modulus at 500% elongation, tensile strength, hardness (Shore A), and electrical (volume) resistivity. In addition, after undergoing thermal aging at 70°C for 96?h, the tensile modulus and hardness (Shore A) increased, while the tensile strength and elongation at break decreased. This work also compared the properties of WES/RVNRL with commercial CaCO3/RVNRL samples at the same 4-phr content. The results indicated that both composites had similar tensile properties, implying possible replacement of commercial CaCO3 with WES powder as an effective reinforcing filler in RVNRL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号