首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The radiation-induced grafting of ethyl vinyl ether to polypropylene film in bulk has been investigated under super-dry conditions. The per cent grafting increased linearly with increasing dose without an induction period. The grafting did not take place in the presence of traces of water, indicating that the grafting proceeds by an ionic mechanism. The dose-rate dependence of the rate of grafting was found to be 0.25. The grafting was also examined in n-pentane and neopentane solutions. Although the per cent grafting in the solution system was lower than that in the bulk system, n-pentane was found to increase the grafting efficiency.  相似文献   

2.
The excess electron mobility in supercritical n-, iso- and neopentane was measured isothermally as a function of density. The density-normalized mobility μN in all three isomers goes through a minimum at a density below the respective critical densities, and the mobility is quite temperature-dependent in this region, then goes through a minimum. The μN behavior around the minimum in n-pentane is well accounted for by the Cohen-Lekner model with the structure factor S(K) estimated from the speed of sound, while that in iso- and neopentane is not.  相似文献   

3.
Molecular dynamics simulations were carried out to study the influences of two naturally occurring osmolytes, urea, and trimethylamine-N-oxide (TMAO) on the hydrophobic interactions between neopentane molecules. In this study, we used two different models of neopentane: One is of single united site (UA) and another contains five-sites. We observe that, these two neopentane models behave differently in pure water as well as solutions containing osmolytes. Presence of urea molecules increases the stability of solvent-separated state for five-site model, whereas osmolytes have negligible effect in regard to clustering of UA model of neopentane. For both models, dehydration of neopentane and preferential solvation of it by urea and TMAO over water molecules are also observed. We also find the collapse of the second-shell of water by urea and water structure enhancement by TMAO. The orientational distributions of water molecules around different layers of neopentane were also calculated and we find that orientation of water molecules near to hydrophobic moiety is anisotropic and osmolytes have negligible effect on it. We also observe osmolyte-induced water-water hydrogen bond life time increase in the hydration shell of neopentane as well as in the subsequent water layers.  相似文献   

4.
The solubility of n-pentane gas in aqueous solution of sodium dodecyl sulfate (SDS), SDS-0.1 wt% polyethylene oxide (PEG), SDS-0.1 wt% PEG+NaCl (0.1 mol/l), and SDS-0.1 wt% PEG+NaOH (0.1 mol/l) has been determined at 318.15 K. The concentration of SDS (m(SDS)) is up to 50 mmol/kg. The solubility increases linearly with the concentration of SDS above its critical micelle concentration (CMC) or critical aggregation concentration (CAC), indicating that micelles in the solutions solubilize the gas molecules and the solubility of n-pentane gas in the micelles is independent of the SDS concentration. It was found that the solubilization ability of micelles bound to PEG and free micelles to n-pentane gas is almost the same. The solubility of n-pentane gas in micelle phase is three magnitudes higher than that in the bulk solution. The solubilization property of SDS is changed by the addition of PEG, although the solubilizing effect of the polymer alone is not considerable. NaCl and NaOH affect the solubilization noticeably and increase the interaction strength between SDS and PEG. The standard Gibbs energies for the transfer of n-pentane gas from bulk phase to micelle phase are large negative values, indicating that the hydrocarbon gas prefers to exist in the hydrophobic interior of the micelles.  相似文献   

5.
利用自由基抑制剂二甲基亚砜(DMSO)与依达拉奉(Edaravone)研究了多巴胺(DA)聚合中可能存在的自由基聚合路径,并考察了p H值对聚合过程的影响.利用紫外-可见光谱跟踪了反应过程.研究结果表明,DMSO和Edaravone均可抑制DA的聚合,而且Edaravone的抑制作用更加显著.研究结果表明,自由基聚合路径存在于DA的聚合过程中.实验还发现,DA的聚合速率随着p H值的升高而增大,但不同p H值时溶液的最终外观基本一致.  相似文献   

6.
Muonium has been observed in neopentane and tetramethylsilane by a pulsed MuSR method. The probability of muonium formation was ≈ 20%, and its relaxation times were 8 and 2.6 μs for liquid neopentane and tetramethylsilane, respectively. The rate of muonium relxation has been shown to be correlated well with the dissociation energy of the CH bonding.  相似文献   

7.
The complex dielectric permittivity in the frequency range 7.5–25.0 GHz and the low-frequency specific conductivity of aqueous solutions of diallylammonium salts (diallylammonium and diallylmethylammonium trifluoroacetates and diallyldimethylammonium chloride) were measured at 293–308 K over a wide concentration range. On the basis of the results, the parameters of dielectric relaxation were calculated. The number of water molecules in the solvation shell of the salts was estimated. The concentration behavior of the initial rate of radical polymerization of diallylammonium salts and the rate constant of bimolecular chain termination was correlated with the specific features of the structure of aqueous monomer solutions. The role of “free” water in the initial salt solutions was revealed, a species whose presence in the system determines the character of concentration behavior of the rate constants for the elementary steps of polymerization, such as propagation, chain transfer to the monomer, and bimolecular chain termination.  相似文献   

8.
A mathematical formulation is given which describes the evolution of the number distribution of the molecular weight (MWD) of linear polymer chains that grow in emulsion polymerization systems. The resulting set of coupled ordinary differential equations takes into account the microscopic events of free radical entry, exit, chain annihilation, bimolecular termination (by combination and disproportionation), and chain transfer in a mono- or polydisperse system. Simple analytic solutions are presented for systems in which the number of particles, as well as the average number of free radicals per particle, is constant and in which the rate coefficients are size independent. These solutions indicate that compartmentalization of the free radicals in the latex particles results in a significant increase in the polydispersity of the polymer produced by emulsion polymerization, compared with that in bulk systems. The theory shows that significant mechanistic information may be obtained from experimental MWDs and that, in principle, experimental conditions may be prescribed to grow a desired MWD. The MWDs are presented in a novel manner that facilitates the comparison of theory with experiment.  相似文献   

9.
The radiation-initiated copolymerization of styrene and acrylonitrile was investigated at 20° in dimethylformamide (DMF) and in benzylalcohol solutions. The compositions of the copolymers were only slightly affected by these polar solvents. The influence of temperature on the copolymerization in DMF solutions was studied in greater detail. It was found that the acrylonitrile content in the copolymer obtained at -78° drastically increased as a result of an anionic polymerization of acrylonitrile. Fractional precipitation of the products obtained at -78° showed that they were not mixtures of polymers but were block copolymers containing long sequences of acrylonitrile units. This copolymer is assumed to arise as a result of the simultaneous growing of the two ends of a primary radical-ion, acrylonitrile adding to one end by an anionic mechanism while the free radical end initiates a random copolymerization of styrene and acrylonitrile. The anionic contribution to the over-all process was established. The anionic homopolymerization of acrylonitrile was studied in DMF, toluene and their mixtures. The rate was found to exhibit a maximum for 20% acrylonitrile in DMF. It was further noticed that significant amounts of DMF could be replaced by toluene or styrene without affecting the rate. The reduction in rate in more concentrated monomer solutions was attributed to an autoinhibition of acrylonitrile in its anionic polymerization.  相似文献   

10.
The values of the parameters that are necessary to compute the free volume changes accompanying polymerization were determined from viscosity data of concentrated polymer solutions. Relationships applicable above and below the glass transition temperature of the polymer were quantified. A general treatment of the variation of the propagation rate constant with free volume was postulated, based on the variation of the monomeric diffusivity with free volume. This, in turn, was related to the friction coefficient of a polymer chain segment, the values of which are readily available. A discussion of the reaction behavior in the last stage of polymerization and the occurrence of limiting conversion is also presented.  相似文献   

11.
Molecular dynamics simulations are used to obtain potentials of mean force for pairs of neopentane molecules immersed in aqueous solutions containing urea, trimethylamine-N-oxide (TMAO), or both solutes at once. It is shown that the hydrophobic attraction acting between neopentane pairs in pure water and in water-urea solution is completely destroyed by the addition of TMAO. This strongly suggests that TMAO does not counter the protein denaturing effect of urea by enhancing hydrophobic attraction amongst nonpolar groups.  相似文献   

12.
The enthalpy of solution (Delta(solv)H(m)) and solubility of 1,4-naphthoquinone in CO(2) + n-pentane were measured at 308.15 K in the critical region of the binary fluid. In order to study the effect of phase behavior of the mixed solvent on Delta(solv)H(m), the experiments were carried out in the supercritical (SC) and subcritical region of the binary solvent. The density of the mixed solvent in different conditions was determined. The isothermal compressibility (K(T)) of the mixed solvent, and the partial molar volume (V(n-pentane)) of n-pentane in the solution were calculated. It was demonstrated that the Delta(solv)H(m) was negative in all conditions. Delta(solv)H(m) is nearly independent of pressure or density in all the solvents in a high-density region, in which compressibility of the solvent is very small; this indicates that the intermolecular interaction between the solvent and the solute is similar to that for liquid solutions. It is very interesting that Delta(solv)H(m) in the mixed SC fluid differs from the Delta(solv)H(m) in mixed subcritical fluids. The absolute value of Delta(solv)H(m) in the mixed SC fluid is close to that in pure SC CO(2) in the high-density region, and is much lower than that in pure SC CO(2) in the low-density region. In the mixed subcritical fluids, the Delta(solv)H(m) is also close to that in the pure CO(2) in the high-density region. However, at the same density, the absolute value of Delta(solv)H(m) in the binary subcritical fluid is larger than that in pure CO(2) in the high-compressible region of the mixed solvent. The main reason for this is that the degree of clustering in the SC solutions is small at the density in which the degree of clustering is large in the subcritical solutions. It can be concluded that solubility enhancement by n-pentane in the mixed SC fluid is entropy driven. In contrast, the solubility enhancement by n-pentane in subcritical fluids is enthalpy driven. The intermolecular interaction in the SC solutions and subcritical solutions can be significantly different even if their densities are the same.  相似文献   

13.
To understand the mechanism of protein protection by the osmolyte trimethylamine-N-oxide (TMAO) at high pressure, using molecular dynamics (MD) simulations, solvation of hydrophobic group is probed in aqueous solutions of TMAO over a wide range of pressures relevant to protein denaturation. The hydrophobic solute considered in this study is neopentane which is a considerably large molecule. The concentrations of TMAO range from 0 to 4 M and for each TMAO concentration, simulations are performed at five different pressures ranging from 1 atm to 8000 atm. Potentials of mean force are calculated and the relative stability of solvent-separated state over the associated state of hydrophobic solute are estimated. Results suggest that high pressure reduces association of hydrophobic solutes. From computations of site-site radial distribution function followed by analysis of coordination number, it is found that water molecules are tightly packed around the nonpolar particle at high pressure and the hydration number increases with increasing pressure. On the other hand, neopentane interacts preferentially with TMAO over water and although hydration of neopentane reduces in presence of this osmolyte, TMAO does not show any tendency to prevent the pressure-induced dispersion of neopentane moieties. It is also observed that TMAO molecules prefer a side-on orientation near the neopentane surface, allowing its oxygen atom to form favorable hydrogen bonds with water while maintaining some hydrophobic contacts with neopentane. Analysis of hydrogen-bond properties and solvation characteristics of TMAO reveals that TMAO can form hydrogen bonds with water and it reduces the identical nearest neighbor water molecules caused by high hydrostatic pressures. Moreover, TMAO enhances life-time of water-water hydrogen bonds and makes these hydrogen bonds more attractive. Implication of these results for counteracting effect of TMAO against protein denaturation at high pressures are discussed.  相似文献   

14.
The cationic polymerization of α-methylstyrene with boron trifluoride etherate was studied in 1,2-dichloroethane under an electric field. The electric field was again found to increase the polymerization rate. This field effect was independent of monomer concentration, as was found previously. The effect, however, became greater as the catalyst concentration was lowered, unlike previous findings with various cationic systems. Furthermore, the field effect became smaller with rising temperature, whereas it had been practically independent of temperature in previous studies. The field effect increased linearly with the field strength. At 2.7 kv./cm. the rate was almost tripled. The field effect was small at lower dielectric constants, as had been observed previously. The large field effects observed and their “exceptional” behavior led to the interpretation that “partial” desolvation of free, growing chain ends, in addition to the field-facilitated dissociation, was responsible for the effect. Specific conductivities of polymerizing solutions and catalyst solutions were measured and are discussed.  相似文献   

15.
The influence of osmolytes urea and trimethylamine- N-oxide (TMAO) on hydrophobic interactions is investigated employing molecular dynamics simulations. These osmolytes are of interest because of their opposing influence on proteins in solution; the denaturing effect of urea can be countered with TMAO. A neopentane pair is used to model typical nonpolar entities. Binary water-urea and water-TMAO as well as ternary water-urea-TMAO systems are considered. Neopentane-neopentane potentials of mean force, neopentane-water, and neopentane-osmolyte distribution functions are reported. Urea is found to have only modest influence on the neopentane-neopentane potential of mean force, but the hydrophobic attraction is completely destroyed by the presence of TMAO. It is shown that TMAO tends to act as a simple "surfactant" displacing water and urea (if it is present) from the first solvation shell of neopentane. It is likely the surfactant-like influence of TMAO that accounts for the elimination of the hydrophobic attraction. The implications of our results for explanations of the action of TMAO in protein solutions are discussed.  相似文献   

16.
The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.  相似文献   

17.
In the present study the retaining precolumn, which is commonly used in a set-up for large-volume on-column injections, or when solid-phase extraction (SPE) or liquid chromatography is coupled to gas chromatography (CC), was removed after varying its length from the standard length of 3 m down to zero. A dramatic increase of the evaporation rate of the injected organic solvent was obtained from a typical value of 100 microl/min up to 300 microl/min. The increased evaporation rate allowed (i) injection of a larger volume in the same retention gap, (ii) faster injection/transfer of the organic solvent and (iii) reduction of the transfer temperature. As volatile compounds under partially concurrent solvent evaporation conditions are easily lost once the organic solvent has been removed via a solvent-vapour exit (SVE), the parameters for large-volume injection, i.e. the evaporation rate and injection speed, were optimised using accurate measurements of the real flow-rate of the carrier gas into the GC system. All these options have been evaluated over the last 4 years. In order to demonstrate that omitting the retaining precolumn had no effect on the application range of the on-column interface, analytes as volatile as benzene were injected into GC-MS using 50-200 microl of n-pentane solutions. Contaminants were extracted from river water and wastewater into n-pentane using in-vial liquid-liquid extraction. The detection limits for benzene, toluene, ethylbenzene and m-xylene were approximately 10 ng/l. To obtain optimum results the SVE had to be closed 1 s before the end of evaporation. Several brands of n-pentane were analysed to check for the presence of benzene. Most of them contained interfering compounds and benzene at the low microg/l level and therefore had to be cleaned by means of column chromatography. As another example C8-C17 alkylphenones were extracted from wastewater with n-hexane. Detection limits were 10-40 ng/l.  相似文献   

18.
The gel effect in free radical polymerization of vinyl monomers has been recognized as the result of the increased viscosity of the reaction solution of polymer in monomer, which causes a decrease in the rate of the termination reaction. This effect manifests itself as an increase in the rate of polymerization over that rate to be expected in its absence. Definition of the onset of the gel effect has become necessary for several purposes. Previously, it has been common to define the onset phenomenologically, i.e., in terms of the increase in the rate of polymerization. It is proposed here that the onset of the gel effect is best defined on a fundamental basis, i.e., as occurring at that conversion at which the rate of segmental diffusion of the polymeric radicals equals the rate of their translational diffusion. Experimental evidence is presented that shows that the small minima predicted by this definition do exist for both rates and degrees of polymerization. Measurements of the viscosities of solutions of polymers in their monomers suggest that the polymer concentrations at which the “chain-entanglement” phenomena are observed are the same as those for the onset of the gel effect for styrene, methyl methacrylate, and butyl methacrylate.  相似文献   

19.
正戊烷与SO2气相光化学反应自由基机理的ESR验证   总被引:1,自引:0,他引:1  
烷烃与SO2的气相光化学作用为自由基反应[1].Penzhorn等[2]对C4以下的气相烷烃与SO2光化学反应产物的复杂性和多样性进行了推测,此后对该光化学反应机理的研究均以反应产物(特别是凝聚态产物)为基础进行的[3].为验证烷烃与SO2光化学反应体系中确实存在自由基,Makarov等[4]向正戊烷与SOz光化学反应体系中引入NO,通过对反应起始阶段的产物的光谱分析和反应动力学研究,论证了该反应的自由基过程.ESR技术是检测自由基的有效方法,Stokes等[5]利用自旋捕集-ESR技术成功地测得了气相羟基自由基的存在.  相似文献   

20.
The presence of "free" trimethylaluminum (TMA) in methylalumoxane (MAO) solutions can be highly detrimental to the performance of metallocene and "post-metallocene" olefin polymerization catalysts. The most used strategy to remove "free" TMA is to evaporate MAO solutions to dryness, until a free-flowing white powder ("solid MAO") is left. This procedure is tedious and potentially hazardous, because in some cases the distillate is a concentrated hydrocarbon solution of TMA. Moreover, "solid MAO" is poorly soluble in common polymerization media, and once in solution it can regenerate TMA to some extent. This communication reports on a facile alternative, which consists in the controlled addition of a sterically hindered phenol, such as 2,6-di-tert-butylphenol, effectively trapping "free" TMA. We show here that 2,6-di-tert-butylphenol/MAO solutions activate equally well the dichloro-precursors of well-known zirconocene and bis(phenoxyimine)Ti catalysts, and that their use in propene polymerization results in a substantially higher productivity, polymer stereoregularity, and/or average molecular mass compared with activation by MAO alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号