首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Europium and terbium salts of methacrylic acid (MA) and octanoic acid (OCA) were prepared by a method similar to that described in the literature. Either Eu(MA)3 or Tb(MA)3 with three double bonds (C?C) was used as a crosslinker containing rare earth metal ions, but the octanoic acid salts were used as additives. The salts were dissolved in methacrylic acid (<20%) and then copolymerized with methyl methacrylate (>80%) using AIBN (0.2 wt%) as initiator. The two types of polymers, one containing Eu(MA)3 or Tb(MA)3 and the other with Eu(OCA)3 or Tb(OCA)3, were synthesized by bulk copolymerization in molds made of two glass plates and characterized. The fluorescence spectroscopy of these polymers under ultraviolet/visible excitation light was investigated. The fluorescence excitation and emission spectra of the polymers showed the characteristic spectra of the free Eu3+ or Tb3+. The fluorescence intensity of the rare earth metal ions increased with increasing rare earth metal content. Fluorescence measurements for Eu(MA)3, Tb(MA)3, and Eu(OCA)3 polymers do not display fluorescence quenching behavior within the range of the rare earth metal content used in our experiments. But for Tb(OCA)3 polymers, this phenomenon was observed, illustrating that ionic aggregates exist in Tb(OCA)3 polymeric systems.  相似文献   

2.
Nanoparticles (NPs) from diketonates of Al3+, Sc3+, In3+ and Ln3+ doped with dye molecules are synthesized. The appearance of sensitized fluorescence (cofluorescence) of dye molecules due to energy transfer from the ensemble of complexes forming NPs is revealed in aqueous solutions of these NPs. It is shown that the dye cofluorescence in NPs from Eu complexes occurs as a result of two distinct processes of energy transfer (ET) to dye molecules: from singlet levels of ligands and from Eu3+ ions. It is found that the efficiency of ET from Eu3+ ions to dyes in NPs from Eu(DBM)3phen is one order of magnitude higher than the efficiency of ET from S1-levels of ligands to dyes in NPs from Al complexes with the same ligands. It is shown that the excitation of dye molecules through ligands of NPs results in the enhancement of the intensity of their fluorescence by a factor of 1.5–2 orders of magnitude compared to the excitation of their own first band of absorption.  相似文献   

3.
合成了四个锌-铕(或铽)异金属双核配合物[ZnLnL1(NO3)3Py] (Ln=Eu (1), Tb (2); HL1=1-H-2-(2-羟基-3-甲氧基苯基)苯并咪唑; Py=吡啶)和[ZnLnL2(NO3)3Py] (Ln=Eu (3), Tb (4); HL2=1-H-2-(2-羟基-3-甲氧基-5-溴苯基)苯并咪唑; Py=吡啶), 其中123是单晶态, 化合物4则为多晶样品; 通过单晶X射线衍射、元素分析、傅里叶变换红外光谱和电喷雾质谱对化合物进行了表征. 化合物的紫外-可见吸收光谱、荧光激发和发射光谱表明配体的激发态能量有效传递到配合物中的镧系金属离子中, 含有铽(III)离子的配合物发射出其特征发射光谱, 而含有铕(III)离子的配合物由于其它去活方式, 没有辐射出铕(III)离子的特征发射光谱.  相似文献   

4.
The influence of excitation of the 4f-orbital of, β-diketonate Eu(fod)3 (fod is heptafluorodimethyloctanedione) on the formation of the coordination bond with adamantanone (1) was studied by the nonradiative energy transfer technique. The kinetic parameters of fluorescence (FL) and the lifetime (τ) of the Eu3+ ion in toluene solutions were studied. The increase in the stability of the Eu(fod)3·1 complex when f—f-transitions of the Eu3+ ion are excited is related to an increase in the acceptor capability of Eu(fod)3 due to the increasing fraction of the covalent component determined by the participation of 4f-orbitals. An unexpected effect of enhancement of the Eu(fod)3 fluorescence under the action of H2O (D2O) molecules in toluene solutions was observed. The effect is assumed to be caused by an increase in the negative inductive effect when outer-sphere associates with the fluorinated radical of β-diketonate are formed. The mechanisms of the influence of electron-donating inner-sphere ligands and outer-sphere associates on the quantum yield of fluorescence of Eu(fod)3 are discussed.  相似文献   

5.
Polyethylene oxide (PEO) oligomers can dissolve lanthanide salts. The terminal hydroxyl groups of PEO affect the solubility of the lanthanide salts in the PEO considerably. However, no intensive fluorescence was observed from Eu3+ dispersed in PEO or other ion-conductive polymers containing terminal hydroxyl groups, because of the quenching effect of the terminal hydroxyl groups. Copolymer of ω-methoxy oligo(oxyethylene) methacrylate and methyl methacrylate (P(MEOM-co-MMA)) could dissolve small amount of Eu(NO3)3, but the copolymer film containing Eu3+ shows intensive fluorescence (Ex = 269.0 nm, Em = 570.0 nm). This was prepared as a soft film, and there was a clear dependence of the Eu3+ concentration on the fluorescence intensity. A linear relation between the film thickness and the fluorescence intensity was also observed. Little fluorescence was found for Eu3+ in the blend of the corresponding two homopolymers, i.e. poly-(ω-methoxy oligo (oxyethylene) methacrylate) (PMEOM) and poly(α-methyl methacrylate) (PMMA). This strongly suggests that intensive fluorescence requires a mixed state of MEOM and MMA units at molecular level.  相似文献   

6.
The excitation energy transfer (EET) pathways in the sensitization luminescence of EuIII and the excitation energy migration between the different ligands in [Eu(fod)3dpbt] [where fod=6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione and dpbt=2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine], exhibiting well-separated fluorescence excitation and phosphorescence bands of the different ligands, were investigated by using time-resolved luminescence spectroscopy for the first time. The data clearly revealed that upon the excitation of dpbt, the sensitization luminescence of EuIII in [Eu(fod)3dpbt] was dominated by the singlet EET pathway, whereas the triplet EET pathway involving T1(dpbt) was inefficient. The energy migration from T1(dpbt) to T1(fod) in [Eu(fod)3dpbt] was not observed. Moreover, upon the excitation of fod, a singlet EET pathway for the sensitization of EuIII luminescence, including the energy migration from S1(fod) to S1(dpbt) was revealed, in addition to the triplet EET pathway involving T1(fod). Under the excitation of dpbt at 410 nm, [Eu(fod)3dpbt] exhibited an absolute quantum yield for EuIII luminescence of 0.59 at 298 K. This work provides a solid and elegant example for the concept that singlet EET pathway could dominate the sensitization luminescence of EuIII in some complexes.  相似文献   

7.
Luminescence upon the grinding of solid materials (triboluminescence, TL) has long been a puzzling phenomenon in natural science and has also attracted attention because of its broad application in optics. It has been generally considered that the TL spectra exhibit similar profiles as those of photoluminescence (PL), although they occur from distinct stimuli. Herein, we describe for the first time a large spectral difference between these two physical phenomena using lanthanideIII coordination polymers with efficient TL and PL properties. They are composed of emission centers (TbIII and EuIII ions), antenna (hexafluoroacetylacetonate=hfa), and bridging ligands (2,5-bis(diphenylphosphoryl)furan=dpf). The emission color upon grinding (yellow TL) is clearly different from that upon UV irradiation (reddish-orange PL) in TbIII/EuIII-mixed coordination polymers [Tb,Eu(hfa)3(dpf)]n (Tb/Eu=1). The results directly indicate the discrete excitation processes of PL and TL.  相似文献   

8.
Luminescence upon the grinding of solid materials (triboluminescence, TL) has long been a puzzling phenomenon in natural science and has also attracted attention because of its broad application in optics. It has been generally considered that the TL spectra exhibit similar profiles as those of photoluminescence (PL), although they occur from distinct stimuli. Herein, we describe for the first time a large spectral difference between these two physical phenomena using lanthanideIII coordination polymers with efficient TL and PL properties. They are composed of emission centers (TbIII and EuIII ions), antenna (hexafluoroacetylacetonate=hfa), and bridging ligands (2,5‐bis(diphenylphosphoryl)furan=dpf). The emission color upon grinding (yellow TL) is clearly different from that upon UV irradiation (reddish‐orange PL) in TbIII/EuIII‐mixed coordination polymers [Tb,Eu(hfa)3(dpf)]n (Tb/Eu=1). The results directly indicate the discrete excitation processes of PL and TL.  相似文献   

9.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

10.
New interesting luminescent α-sialon (M(m/val+)val+ Si12-(m+n) Al(m+n)OnN(16−n)) (M=Ca, Y) materials doped with Ce, Tb, or Eu have been prepared and their luminescence properties studied. These show that Tb and Ce are in the 3+ and Eu in the 2+ state. Low-energy 4f↔5d transitions are observed as compared to the luminescence of these ions doped in oxidic host-lattices. This is partially explained by the nitrogen-rich coordination of the rare-earth ion and partially by the narrow size of the lattice site. The latter gives rise to a strong crystal-field splitting of the 5d band and a rather large Stokes shift for Ce3+ and Eu2+ (6500-7500 and 7000-8000 cm−1, respectively). For (Y,Tb)-α-sialon the Tb3+ 4f→5d excitation band (∼260 nm) is in the low-energy host-lattice absorption band (?290 nm), giving rise to a strong absorption for 254-nm excitation, but a low quantum efficiency. The latter is due to photoionization processes or selective excitation of Tb3+ at the defect-rich surface, resulting in radiationless transitions. Ce- and Eu-doped Ca-α-sialon show bright long-wavelength luminescence (maxima at 515-540 and 560-580 nm for Ce and Eu, respectively) with a high quantum efficiency and high absorption for 365- and 254-nm excitation. The Eu2+ emission intensity and absorption increases for increasing m, which is explained by the Eu2+ richer α-sialon composition. The position of the Eu emission does not shift with changing composition of the host-lattice (m, n values), indicating that the local coordination of the Eu2+ ion is hardly dependent on the matrix composition.  相似文献   

11.
Our recent results on the investigation of lanthanide metal polymer complexes were presented. Luminescence properties of Tb3+ or Eu3+ -polycarboxylate complexes in aqueous solution were investigated. The excitation band near 300 nm for Tb or Eu(polyacrylate) solutions were drastically enhanced by the addition of hydroxy radical generating reagents as well as ultrasonic irradiation. These spectral changes were attributed to the energy transfer from chromophore molecules formed by generated hydroxy radicals in both systems. Since the increase in the luminescence intensity was proportional to the hydroxy radical concentration, the Eu3+ or Tb3+ (PAA) system can provide a convenient method for the determination of hydroxy radical concentration in aqueous solution. We have also utilized lanthanide metal ion complexes as a luminescent emitter in electroluminescence (EL) devices. The configuration of the EL cell and experimental results were discussed.  相似文献   

12.
A series of Ln3+-metal centered complexes, Ln(TTA)3(DPPI) (Ln = La, 1; Ln = Eu, 2; Ln = Tb, 3; or Ln = Gd, 4) [(DPPI = N-(4-(1H-imidazo [4,5-f][1,10]phenanthrolin-2-yl)phenyl)-N-phenylbenzenamine) and (TTA = 2-Thenoyltrifluoroacetone)] have been synthesized and characterized. Among which, the Eu3+-complex shows efficient purity red luminescence in dimethylsulfoxide (DMSO) solution, with a Commission International De L’ Eclairage (CIE) coordinate at x = 0.638, y = 0.323 and ΦEuL = 38.9%. Interestingly, increasing the amounts of triethylamine (TEA) in the solution regulates the energy transfer between the ligand and the Eu3+-metal center, which further leads to the luminescence color changing from red to white, and then bluish-green depending on the different excitation wavelengths. Based on this, we have designed the IMPLICATION logic gate for TEA recognition by applying the amounts of TEA and the excitation wavelengths as the dual input signal, which makes this Eu3+-complex a promising candidate for TEA-sensing optical sensors.  相似文献   

13.
Separation processes based on room temperature ionic liquids (RTIL) and electrochemical refining are promising strategies for the recovery of lanthanides from primary ores and electronic waste. However, they require the speciation of dissolved elements to be known with accuracy. In the present study, Eu coordination and EuIII/EuII electrochemical behavior as a function of water content in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]) was investigated using UV–visible spectrophotometry, time-resolved laser fluorescence spectroscopy, electrochemistry, and X-ray absorption spectroscopy. In situ measurements were performed in spectroelectrochemical cells. Under anhydrous conditions, EuIII and EuII were complexed by NTf2, forming Eu−O and Eu−(N,O) bonds with the anion sulfoxide function and N atoms, respectively. This complexation resulted in a greater stability of EuII, and in quasi-reversible oxidation–reduction with an E0’ potential of 0.18 V versus the ferrocenium/ferrocene (Fc+/Fc) couple. Upon increasing water content, progressive incorporation of water in the EuIII coordination sphere occurred. This led to reversible oxidation–reduction reactions, but also to a decrease in stability of the +II oxidation state (E0’=−0.45 V vs. Fc+/Fc in RTIL containing 1300 mm water).  相似文献   

14.
The new oxyborate phosphors, Na3La9O3(BO3)8:Eu3+ (NLBO:Eu) and Na3La9O3(BO3)8:Tb3+ (NLBO:Tb) were prepared by solid-state reactions. The photoluminescence characteristics under UV excitation were investigated. The dominated emission of Eu3+ corresponding to the electric dipole transition 5D07F2 is located at 613 nm and bright green luminescence of NLBO:Tb attributed to the transition 5D47F5 is centered at 544 nm. The concentration dependence of the emission intensity showed that the optimum doping concentration of Eu and Tb is 30% and 10%, respectively.  相似文献   

15.
NaYF4:Eu/Sr nanocrystals were synthesized by a hydrothermal method. Tunable photoluminescence of the NaYF4:Eu nanocrystals was successfully achieved by codoping with Sr2+ ions. With increasing Sr2+ concentration, not only the X-ray diffraction peaks of the nanocrystals become broader, but also the positions of them shift toward larger lattice parameters. Eu3+ and Eu2+ have been found to coexist in an NaYF4:Eu/Sr. The Eu3+/Eu2+ emission intensity ratio changed with the Sr2+ concentration and excitation wavelength. More interestingly, the spectral configurations of Eu2+ and Eu3+ also varied with the excitation wavelength, indicating that the nanocrystals have multiple luminescence centers or emitting states.  相似文献   

16.
The measurements of VUV-UV photoluminescence emission (PL) and photoluminescence excitation (PLE) spectra of rare earth ions activated strontium orthophosphate [Sr3(PO4)2:RE, RE = Ce, Sm, Eu, Tb] are performed. Whenever the samples are excited by VUV or UV light, the typical emission of Ce3+, Sm3+, Eu3+, Eu2+ and Tb3+ ions can be observed in PL spectra, respectively. The charge transfer bands (CTBs) of Sm3+ and Eu3+ are found, respectively, peaking at 206 and 230 nm. The absorption bands peaking in the region of 150-160 nm are assigned to the host lattice sensitization bands, i.e., the band-to-band transitions of PO43− grouping in Sr3(PO4)2. It is speculated that the first f-d transitions of Sm3+ (Eu3+), and the CTB of Tb3+are, respectively, located around 165 (1 4 3) and 167 nm by means of VUV-UV PLE spectra and relational empirical formula, these f-d transitions or CT bands are included in the bands with the maxima at 150-160 nm, respectively. The valence change of europium from trivalent to divalent in strontium orthophosphate prepared in air is observed by VUV-UV PL and PLE spectra.  相似文献   

17.
Fluorimetry and differential scanning calorimetry have been used to characterize ionomers that were synthesized by copolymerization of methyl methacrylate, methacrylic acid, and europium methacrylate (EMA). Under excitation of UV light at 375 nm no self-quenching was found in fluorescence of EMA-containing ionomers at 615 nm within the Eu3+ concentration range of 1.6 × 10−2 to 11.49 × 10−2 mol %, which means that the distance between two Eu3+ ions is larger than 50 Å. In the same concentration range self-quenching took place in europium octanoate (EOA)-containing ionomers in which EOA was doped as an additive. Only one Tg was found for both kinds of polymers within the concentration range of Eu3+ ions. For all ion contents studied, Tg values were essentially independent of ion content and values were slightly higher for the EMA containing ionomers. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
Solid phases of the [Eu(Phen)(i-Bu2PS2)2(NO3)]–[Tb(Phen)(i-Bu2PS2)2(NO3)] binary system are synthesized. The results of X-ray diffraction phase analysis and photoluminescence measurements allow the synthesized isostructural phases to be classed with substitutional solid solutions. The photoluminescence measurements revealed Tb(III)→Eu(III) energy transfer which induces Eu3+ luminescence.  相似文献   

19.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

20.
In this study, red phosphors Ca1?n Mg n TiO3:Eu3+,Bi3+ were prepared by the sol?Cgel method and the impact of single dopant, co-dopants and solid solutions on the photoluminescence of the samples has been also investigated. Our results show that the crystal structure of the host does not have distinct changes when doped with Eu3+, Bi3+ and/or Mg2+. The emission intensity at 615?nm of Eu3+ increased at the presence of Bi3+ ions owing to the energy transfer from Bi3+ ion to Eu3+ ion. Moreover, with the addition of Mg2+, the red emission of the phosphor was further enhanced due to the stronger absorption at 399 and 467?nm, which match well with the emission of near-UV (395?C400?nm) and blue-LED (450?C470?nm), respectively. Under the near-UV (399?nm) or blue light (467?nm) excitation, the fluorescence quantum yield of the optimal composition Ca0.9Mg0.1TiO3:0.18Eu3+,0.018Bi3+ is 0.36 and 0.41, respectively, which possesses the higher photoluminescence intensity than CaMoO4:0.2Bi3+,0.05Eu3+ and the commercially available Y2O2S:Eu3+ phosphors under near-UV excitation. Based on these results, we are currently considering the potential application of Ca0.9Mg0.1TiO3:Eu3+,Bi3+ as a near-UV or blue-chip convertible red-emitting phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号