首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
This paper presents a fundamentally new approach for the manufacturing and the possible applications of lab on a chip devices, mainly in the form of disposable fluidic microchips for life sciences applications. The new technology approach is based on a novel microscale thermoforming of thin polymer films as core process. The flexibility not only of the semi-finished but partly also of the finished products in the form of film chips could enable future reel to reel processes in production but also in application. The central so-called 'microthermoforming' process can be surrounded by pairs of associated pre- and postprocesses for micro- and nanopatterned surface and bulk modification or functionalisation of the formed films. This new approach of microscale thermoforming of thin polymer film substrates overlaid with a split local modification of the films is called 'SMART', which stands for 'substrate modification and replication by thermoforming'. In the process, still on the unformed, plane film, the material modifications of the preprocess define the locations where later, then on the spatially formed film, the postprocess generates the final local modifications. So, one can obtain highly resolved modification patterns also on hardly accessible side walls and even behind undercuts. As a first application of the new technology, we present a flexible chip-sized scaffold for three dimensional cell cultivation in the form of a microcontainer array. The spatially warped container walls have been provided with micropores, cell adhesion micropatterns and thin film microelectrodes.  相似文献   

2.
Multilayer thin film coatings were prepared on silicon substrates. Poly(vinyl alcohol) was adsorbed from aqueous solution to propyldimethylsilyl-modified silicon wafers. This thin semicrystalline coating was chemically modified using acid chlorides to form thicker, hydrophobic coatings. The products of the modification reactions allowed adsorption of a subsequent layer of poly(vinyl alcohol) that could subsequently be hydrophobized. This two-step process (adsorption/chemical modification) allows layer-by-layer deposition to prepare coatings with thickness, chemical structure, and wettability control.  相似文献   

3.
Wang D  Guo Z  Chen Y  Hao J  Liu W 《Inorganic chemistry》2007,46(19):7707-7709
Nanolamellate structures of CaTiO3 were fabricated by using an in situ hydrothermal synthesis method on titanium for the first time. The number of nanolamellas and the morphology completely or mainly depend on the reaction time and NaOH concentrations, and the wettability of the resulting CaTiO3 surfaces can be successively turned from superhydrophilic to superhydrophobic after modification with a thin layer of hydrophobic silicone, mainly depending on the surface morphology. The proposed formation mechanism of the nanolamellate CaTiO3 structures has also been discussed.  相似文献   

4.
In this paper the microfabrication of ITO (tin‐doped indium oxide) films by the sol–gel process combined with chemical modification is presented. The microfabricated ITO thin film could be obtained through a one‐step process that combines film patterning with film leaching. The morphology and chemical components of the patterned ITO thin films were assessed by microscopy and XPS, respectively. Imaging XPS analysis is an effective way to evaluate the quality of the fine patterning. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This research is conducted to make solid-state electrolyte based on natural polymers, as an alternative material for energy storage such as battery. Natural polymers as materials of solid state batteries have various benefits, such as unlimited abundance, biodegradable, unleakage, stable form, excellent process, and electrochemical stability, compare to the liquid ones. In this study, a solid state polymer electrolyte based on natural polymer such as chitosan was synthesized by incorporating various ion salts (Li, Cu, Ag) in the polymer matrix. The synthesis of solid-state electrolyte polymer was carried out by casting method to make a thin polymer film. Then the ionic (Li, Cu, Ag) doping with various implant dose will be applied to the thin polymer film matrix by ionic implantation technique. The implanted polymer electrolytes are then characterized their conductivities, micro structures, and crystal structures by high precision LCR, scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD), respectively. The measured of conductivities showed that thin film polymers after implanted with ionic Li, Cu or Ag were increased the conductivity, meanwhile elemental analisys by electron dispersive spectroscopy indicated that ionic implant to chitosan was success. The modification of chitosan polymer to become electrolyte polymer can be concluded.  相似文献   

6.
Nanofibrillated cellulose (NFC) is increasingly utilized in materials and biomedical applications consequently increasing interest in the modification of its surface properties. Besides modification using polyelectrolytes and polysaccharides, NFC can be combined with solid particles enabling formation of fibril network loaded with particles. Use of particles enabling easy functionalization could be beneficial for the development of hybrid structures, and lead to preparation of nanocomposites and functional materials. In order to explore interactions related to preparation of such structures, the interactions between nanosized precipitated calcium carbonate (nanoPCC) and nanoclay particles and NFC were examined by observing adsorption of the particles on NFC substrate using a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) imaging. By a treatment with carboxymethylated cellulose (CMC), the anionicity of the NFC substrate could be increased, providing an additional tool to affect the interplay between NFC and the inorganic particles. For slightly cationic nanoPCC particles an increase in the anionicity of the NFC by the CMC treatment increased the affinity, while the opposite was true for anionic nanoclay. Additionally, for interactions between nanoclay and NFC, dispersion stability was an important factor. QCM-D was successfully used to examine the adsorption characteristics of nanoparticles although the technique is commonly used to study the adsorption of thin polymer layers. Distinct adsorption characteristics were observed depending on the nanoparticle used; nanoclay particles deposited as a thin layer, whereas nanoPCC particles formed clusters.  相似文献   

7.
Using a combination of an aqueous layer-by-layer deposition technique, nanoparticle surface modification chemistry, and nanoreactor chemistry, we constructed thin film coatings with two distinct layered functional regions: a reservoir for the loading and release of bactericidal chemicals and a nanoparticle surface cap with immobilized bactericides. This results in dual-functional bactericidal coatings bearing both chemical-releasing bacteria-killing capacity and contact bacteria-killing capacity. These dual-functional coatings showed very high initial bacteria-killing efficiency due to the release of Ag ions and retained significant antibacterial activity after the depletion of embedded Ag because of the immobilized quaternary ammonium salts.  相似文献   

8.
We performed molecular dynamics simulations to analyze the initial stage of the thermal degradation of polyethylene, which is dominated by the random scission reaction. The simulations were initiated from structures that were taken from previously equilibrated snapshots of the amorphous polymer and of a free-standing thin film. Isolated chains were also used for comparison. Our systems were coupled to a thermal heat bath, and the effect of different coupling constants was studied. Rate of random scission increases as the strength of the temperature coupling increases. Rates of reaction are almost similar in thin films and the bulk, whereas the rates are much faster in isolated chains. Expansion of the free-standing thin film accompanies degradation, producing fragments of various sizes. Chains of higher molecular weights than the initial chains can be produced due to recombination of fragments during the expansion of thin films. The polydispersity index of the resulting fragments is higher in thin films compared to the bulk. The bonds at the low density portion of the thin films have a higher probability of being broken.  相似文献   

9.
Helical tubules are a fascinating and an intriguing class of self-assemblies. They occur frequently in biology and are believed to be intermediates in formation of gallstones. The pathway by which amphiphiles transform from an initial state of vesicles or micelles into such tubules has puzzled soft matter physicists, and it has raised important questions about the interplay between molecular chirality and self-assembly. Here, for the first time, we demonstrate direct, real-time observations by light microscopy of the pathway to helical microtubules from an initial solution of nanoscale vesicles. The tubules are formed in aqueous mixtures of the single-tailed diacetylenic surfactant, 10,12-pentacosadiynoic acid (PCDA), and a short-chain alcohol. The stepwise process involves nucleation of thin helical microribbons from the vesicle solution. These ribbons then thicken, rearrange, and fold into closed tubules. Subsequently, most tubules further rearrange into plate-like structures, and once again, we are able to visualize this process in real time. A notable aspect of the above system is that the precursors are achiral; yet, the tubules are formed from helical ribbons. Our study provides new insights into tubule formation that will be valuable in clarifying and refining theoretical models for these fascinating structures.  相似文献   

10.
A two-step process has been developed in order to renovate highly photodegraded polymers. It was applied to clear and pigmented commercial PVC plates, which were exposed to accelerated weathering. The brown highly degraded top layer was first removed by sandpapering, which makes the color disappear and restores the original impact resistance of PVC. In a second step, a thin film of a UV-curable acrylic resin was sprayed onto the PVC plate, which thus recovered its initial transparency. After a 1s UV exposure, the coated PVC was found to exhibit an excellent resistance to chemicals, weathering and scratching. One of the distinct advantages of this new low-cost recycling process is that it is based on existing technologies and can be carried out directly on the plastic structures to be renovated.  相似文献   

11.
ZnO thin films were prepared by a chemical etching method and their wettability was investigated. The structure and surface composition structure were characterized by means of scanning electron microscopy, X-ray photoelectronic spectrometry(XPS), X-ray diffraction(XRD) and Raman spectrometry. These analyses reveal that the etched films were large-scale micro-nanohierarchical structures composed of a Zn core and a ZnO coating. Superhydrophobic surfaces with water contact angles of over 150o were obtained by n-octadecanethiol(ODT) modification. The XPS and Raman results indicate that ODT molecules were bound to the ZnO surface with the S head group by forming Zn-S bond.  相似文献   

12.
Boron-doped diamond (BDD) thin films with different crystal grain sizes were prepared by controlling the reacting gas pressure using hot filament chemical vapor deposition (HFCVD). The morphologies and structures of the prepared diamond thin films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical responses of K4Fe(CN)6 on different BDD electrodes were investigated. The results suggested that electron transfer was faster at the boron-doped nanocrystalline diamond (BDND) thin film electrodes in comparison with that at other BDD thin film electrodes. The prepared BDD thin film electrodes without any modification were used to directly detect glucose in the basic solution. The results showed that the as-prepared BDD thin film electrodes exhibited good selectivity for detecting glucose in the presence of ascorbic acid (AA) and uric acid (UA). The higher sensitivity was observed on the BDND thin film grown on the boron-doped microcrystalline diamond (BDMD) thin film surface, and the linear response range, sensitivity and the low detection limit were 0.25–10 mM, 189.1 μA mmo?1 cm?2 and 25 μM (S/N=3) for glucose in the presence of AA and UA, respectively.  相似文献   

13.
TiO2 thin film was prepared on Si substrate by plasma chemical vapor deposition (PCVD) system and the morphologies of TiO2 thin film were controlled by adjusting the initial precursor concentration. As the initial titanium tetra-isopropoxide (TTIP) concentration increases in PCVD reactor, the shapes of TiO2 particles generated in PCVD reactor change from the spherical small-sized particles around 20 nm and spherical large-sized particles around 60 nm to aggregate particles around 100 nm. The TiO2 particles with different shapes deposit on the substrate and become the main building blocks of resulting TiO2 thin film. We observed the TiO2 thin film with smooth morphology at low initial TTIP concentration, granular morphology at medium initial TTIP concentration, and columnar morphology at high initial TTIP concentration. It is proposed that we can prepare the TiO2 thin film with controlled morphologies in one-step process just by adjusting the initial precursor concentration in PCVD.  相似文献   

14.
Carbon linked tetradentate chelators based on kojic acid were synthesised by a modification of the Mannich reaction. Suppression of the aminomethylation process favours the formation of dimeric, Bakerlite-type structures.  相似文献   

15.
二元醇改性密胺甲醛树脂包覆红磷   总被引:1,自引:0,他引:1  
马千  刘增杰  梁轶  董天贺  韩福芹 《应用化学》2015,32(10):1153-1158
用乙二醇和1,4-丁二醇对密胺甲醛树脂(MF)包覆红磷(MFRP)进行了化学改性,并对改性前后MFRP的磷化氢释放情况进行了比较。 在模拟材料加工条件下,纯红磷(RP)的磷化氢释放量为44.51 mg/L,MFRP磷化氢释放量降低到24.13 mg/L,而二元醇改性包覆红磷,磷化氢释放量降低到8.05 mg/L。 改性包覆效果显著。 用傅里叶红外光谱(FTIR)表征改性前后MFRP的结构,证实改性剂成功介入树脂结构中。 热重分析(TG/DTG)结果表明,改性后,MFRP的初始分解温度由未改性的264 ℃降到182 ℃,最大失重速率由11%/min下降到4.1%/min,800 ℃时,改性前后的MFRP残留量相同,均为11%。  相似文献   

16.
For the fabrication of next-generation MOF-based devices the availability of highly adaptable materials in suitable shapes is crucial. Here, we present thin films of a metal–organic framework (MOF) containing photoreactive benzophenone units. Crystalline, oriented and porous films of the zirconium-based bzpdc-MOF (bzpdc=benzophenone-4-4′-dicarboxylate) are prepared by direct growth on silicon or glass substrates. Via a subsequent photochemical modification of the Zr-bzpdc-MOF films, various properties can be tuned postsynthetically by covalent attachment of modifying agents. Apart from the modification with small molecules, also grafting-from polymerization reactions are possible. In a further extension, 2D structuring and photo-writing of defined structures is also possible, for example by using a photolithographic approach, paving the way towards micro-patterned MOF surfaces.  相似文献   

17.
In this publication, we describe the growth of thin films of calcium carbonate beneath Langmuir monolayers of stearic acid. The size and shape of the crystalline structures were systematically studied by means of different microscopic techniques including Brewster angle microscopy, atomic force microscopy and scanning electron microscopy. In a series of experiments, we explored the calcium carbonate crystallization process for different lipid monolayers and subphases. The observed phenomena support a crystallization process which is induced by a thin, film-like structure of a precursor phase. The basic processes of crystal and aggregate formation can be represented by a simple model which is based on electrostatic interactions between the surfactant film and the inorganic calcium carbonate structures.  相似文献   

18.
The sol-gel technology is being increasingly used for the development of optical sensors and biosensors, due to its simplicity and versatility. By this process, porous thin films incorporating different chemical and biochemical sensing agents are easily obtained at room temperature, allowing final structures with mechanical and thermal stability as well as good optical characteristics. In this article, an overview of the state-of-the-art of sol-gel thin films-based optical sensors is presented. Applications reviewed include sensors for determination of pH, gases, ionic species and solvents, as well as biosensors.  相似文献   

19.
Organic-inorganic films grown entirely via a vapor-phase deposition process and composed of highly polarizable molecular structures are investigated as gate dielectrics in organic field-effect transistors (OFETs). Molecules 1 and 2 form self-ordered thin films via hydrogen bonding, and these organic-inorganic structures exhibit large capacitances and large pentacene OFET mobilities.  相似文献   

20.
Understanding the structure-performance relationship is crucial for optimizing the performance of organic thin film transistors. Here, two interface modification methods were applied to modulate the thin film morphology of the organic semiconductor, 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pentacene). The resulting different film morphologies and packing structures led to distinct charge transport abilities. A substantial 40-fold increase in charge carrier mobility was observed on the octadecyltrichlorosilane(OTS)-modified sample compared to that of the transistor on the bare substrate. A better charge mobility greater than 1 cm2·V-1·s-1 is realized on the p-sexiphenyl(p-6P)- modified transistors due to the large grain size, good continuity and, importantly, the intimate π-π packing in each domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号