首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
考察了软段的种类、分子量大小、混合软段的组成对产物力学性能的影响作用。同时还研究了二羟甲基丙酸(DMPA)用量以及中和剂的影响作用.实验结果表明。软段结构对脂肪族水性聚氨酯成膜的力学性能影响很大,聚酯型产物具有较高的模量和拉伸强度。聚醚型产物则具有较高的伸长率.混合软段对产物力学性能的影响较为复杂,随着软段中聚醚含量的升高,产物的硬度和模量均大幅度下降,但拉伸强度和伸长率的变化并不是一个线性关系.产物的模量随软段分子量的提高而降低,但伸长率和拉伸强度却有所提高.当DMPA用量较高时。产物的模量和拉伸强度均较高:当DMPA用量较低时,产物则具有较高的伸长率.中和剂的种类对产物力学性能的影响明显,当以NaOH为中和剂时,产物具有较高的硬度、模量、拉伸强度:以三乙胺为中和剂时,产物具有较高的伸长率.  相似文献   

2.
The loading effect of precipitated silica (PSi) and fly ash‐based silica (FASi) on mechanical properties of natural rubber/chloroprene (NR/CR) under thermal and thermal‐oil ageing was investigated with variation in NR content in the NR/CR blends. The selected results were compared with vulcanized NR/nitrile rubber (NR/NBR) blends. The cure time of CR vulcanizate was found to decrease with increasing NR content, but increased with silica fillers. The Mooney viscosity for CR vulcanizates reduced with increasing NR content. The addition of NR had no effect on tensile modulus and tensile strength for the FASi filled NR/CR, but the opposite trend was observed for the PSi filled NR/CR. The post‐curing effect was more significant in PSi filled NR/CR than in FASi filled NR/CR. The tensile strength of the NR/CR vulcanizates was slightly reduced after thermal ageing especially at high NR content, more extreme reduction being found by thermal‐oil ageing. The elongation at break of NR/CR with both silica fillers ranged from 400 to 900%. The hardness results were similar to the tensile modulus. The addition of PSi in NR/CR considerably increased the tear strength, but less pronounced effect was found for FASi. The resilience properties of NR/CR tended to decrease with increasing silica content. The compression set became poorer when NR content was increased. The PSi showed higher improvement in compression set than the FASi. The effects of silica and ageing on the mechanical properties for NR/CR vulcanizates were similar to those for NR/NBR vulcanizates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Natural ultramicronized calcium carbonate and mixtures of fumed silica‐natural ultramicronized calcium carbonate are proposed as fillers of solvent based polyurethane (PU) adhesives. PU adhesive containing only calcium carbonate shows similar rheological, thermal, mechanical, surface and adhesion properties than the PU adhesive without filler. Addition of 90 wt% fumed silica +10 wt% calcium carbonate mixture to PU adhesive produced a similar performance than the PU adhesive containing only famed silica. The increase in the amount of natural calcium carbonate in respect to fumed silica in the filler mixture produced detrimental effect on the rheological and mechanical properties of the PU adhesives (in respect to those provided by the PU adhesive only containing fumed silica), although the surface and adhesion properties were not noticeably modified.  相似文献   

4.
溶胶-凝胶法原位生成SiO_2改性硅基耐烧蚀材料   总被引:1,自引:0,他引:1  
建立了在硅基耐烧蚀材料中用溶胶-凝胶法原位生成SiO2的方法.首先将硅橡胶、气相白炭黑、纤维等原料混炼硫化制备出硫化胶.然后将硫化胶依次浸入四氢呋喃、原硅酸乙酯和正丁基胺水溶液中进行预溶胀处理、物理扩散和化学反应,得到原位生成SiO2.SEM照片显示,在硅基耐烧蚀材料中原位生成的SiO2颗粒呈球形,粒径在40~60 nm,但分布不均匀,在硫化胶表层存在富集现象.实验结果表明,原位生成SiO2平均含量增加,硅基耐烧蚀材料的抗拉强度增加,线烧蚀率下降;含13.7%原位生成SiO2硅基耐烧蚀材料抗拉强度为5.82 MPa,线烧蚀率为0.071 mm/s.  相似文献   

5.
The network formed by fillers has great influence on the mechanical properties of rubber materials. To understand the formation of network by carbon black,silica,and carbon black/silica mixing fillers in rubber and its influence on the properties of rubber,isoprene rubber/filler composites with different filler loadings are prepared and their micromorphology,rheological and tensile properties are investigated. It is found that the dispersion of fillers is better in rubber after cure than that in rubber before cure for all three rubber systems,and the filler size of silica is smaller than that of carbon black,but the aggregation is more severe in silica filled rubber system. In mixed filler system,the two fillers tend to aggregate separately, leading to the low modulus at small strain than that in single filler system. With the increase of the filler loading,the tensile strength increases first and then decreases,the elongation at break decreases,and the temperature rise in compression flexometer tests increases. Moreover,the temperature rise in mixed filler system is higher than that in single filler system at high filler loading. © 2022, Science Press (China). All rights reserved.  相似文献   

6.
In this paper, both divinyl-hexa[(trimethoxysilyl)ethyl]-POSS (DVPS) and fumed silica were firstly introduced into polydimethylsiloxane (PDMS) system using as the cross-linker and the reinforcing filler respectively. And a series of novel RTV silicone rubbers synergistically enhanced by DVPS and fumed silica were prepared. The cross-linked networks in the novel RTV silicone rubbers have been studied by attenuated total reflection infrared spectroscopy, and the dispersions of POSS and fumed silica in these novel RTV silicone rubbers have been observed by means of scanning electron microscope (SEM). And thermal stabilities, thermo-oxidative stabilities and mechanical properties of these novel RTV silicone rubbers were studied by means of thermal gravimetric analysis and universal tensile testing machine, respectively. From the obtained results, it was found that synergistic effect between POSS-rich areas and fumed silica on thermal stability and mechanical property of RTV silicone rubber indeed existed. And the experimental results also exhibited that the thermal stabilities and mechanical properties of the novel RTV silicone rubbers were far better than those of the reference materials (DVPR and MTFR). The striking enhancements in thermal properties and improvements on mechanical properties of novel RTV silicone rubbers were likely attributed to the synergistic effect between POSS-rich domains and fumed silica. Meanwhile, it was found that the mechanical properties of RTV silicone rubbers prepared with a given amount of POSS cross-linker were enhanced with the increment of the loading amount of fumed silica.  相似文献   

7.
Various new thermoplastic segmented polyurethanes were synthesized by a one-step melt polymerization from aliphatic-aromatic α,ω-diols containing sulfur in the aliphatic chain, including 4,4′-(ethane-1,2-diyl)bis(benzenethioethanol), 4,4′-(ethane-1,2-diyl)bis(benzenethiopropanol) and 4,4′-(ethane-1,2-diyl)bis(benzenethiodecanol) as chain extenders, hexane-1,6-diyl diisocyanate (HDI) or 4,4′-diphenylmethane diisocyanate (MDI) and 20-80 mol% poly(oxytetramethylene)diol (PTMO) with molecular weight of 1000 g/mol as a soft segment. The reaction was conducted at the molar ratio of NCO/OH = 1 and 1.05, and in the case of the HDI-based polyurethanes in the presence of dibutyltin dilaurate as a catalyst. The effect of the diisocyanate used on the structure and some physicochemical, thermal and mechanical properties of the segmented polyurethanes were studied. The structures of these polyurethanes were examined by FTIR and X-ray diffraction analysis. The thermal properties were investigated by differential scanning calorimetry and thermogravimetric analysis. Shore hardness and tensile properties were also determined. All the synthesized polymers showed partially crystalline structures. The MDI-based polyurethanes were products with lower crystallinity, higher glass-transition temperature (Tg) and better thermal stability in comparison with the HDI-based ones. The MDI series polymers also exhibited higher tensile strength (up to ∼36 MPa vs. ∼23 MPa) and elongation at break (up to ∼3900% vs. ∼900%), but lower hardness than the analogous HDI series polyurethanes. In both series of the polymers an increase in PTMO soft-segment content was associated with decreased crystallinity, Tg, hardness and tensile strength. An increase in PTMO content also involved an increase in elongation at break.  相似文献   

8.
Castor oil was initially subjected to an interesterification reaction with linseed and tung oils and the resulting intermediate was used for the preparation of polyurethanes and their IPNs with poly(methyl methacrylate). They were characterized for their physico-mechanical, swelling, and thermal properties. The morphologies of IPNs were studied with the aid of scanning electron microscopy and differential scanning calorimetry. On comparing the mechanical properties of castor oil polyurethane (CU) and their IPNs (C-IPNs) with those of the castor oil modified with linseed and tung oil (L-IPN and T-IPN, respectively) it was found that L-IPNs showed higher tensile strength, hardness, and better compatibility than C-IPNs. All IPNs showed synergistic effect in elongation and exhibited similar thermal behavior with no significant change with respect to their composition. However, the castor oil polyurethane and their IPNs showed relatively higher elongation and better resistance to solvents.  相似文献   

9.
The effect of incorporating sorbic acid (SA), an echo-friendly curing agent, and silica or carbon black (CB) filler, as well as gamma irradiation on the physico-chemical, mechanical and thermal properties of ethylene propylene diene monomer rubber (EPDM) was investigated. The results indicated that the developed composites revealed improvement in the studied parameters over the untreated samples. Filler incorporation into rubber matrix has been proven a key factor in enhancing the swelling resistance, tensile strength and thermal properties of the fabricated composites. The improvement in tensile strength and modulus was attributed to better interfacial bonding via SA. Alternatively, a comparison was established between the performance of the white and black fillers. The utmost mechanical performance was reported for the incorporated ratios 10 phr SA and 40 phr white filler into a 50 kGy irradiated composite. Meanwhile, the incorporation of CB yielded better thermally stable composites than those filled with silica at similar conditions.  相似文献   

10.
The work presented in this paper has been focused on the evaluation of the influence of the addition of aminosilanes like γ-aminopropyl-triethoxysilane (3-AMPS) on physical and mechanical properties of fresh and hardened polymer modified cement mortars (PMCMs), which contained also mineral fillers like fumed silica and blast furnace slag. The role of the aminosilane in cementitious system was to produce surface modification and covalent bonding among different inorganic phases of inorganic matrix (cement, aggregate, fumed silica) and strong chemical interaction between inorganic matrix and organic (polymer) phase of the mortar. The strong chemical bonding of inorganic matrix and polymer phase transformed composite mortar into cementitious material with more like monolithic structure. Mortars with the addition of aminosilanes showed improved physical-mechanical properties like bending strength, adhesion to concrete, and lower dry-shrinkage.  相似文献   

11.
Polyurethane elastomers containing isocyanurate rings as crosslinking structure were prepared by crosslinking the prepolymers in N,N-dimethylformamide solution with sodium cyanide catalyst. Physical properties such as gel fraction, swelling ratio, density, glass transition temperature, Young's modulus, tensile strength, and elongation at break were measured. The effects of diisocyanate structure, the degree of crosslinking, and the crosslinking structure on the properties of polyurethanes were studied. The stress–strain curves of isocyanurate-type crosslinked polyurethanes prepared from poly(oxytetramethylene)glycol rose at lower extensions and gave higher tensile properties than those of triol-cured and diamine-cured polyurethanes. The observed high tensile properties were attributed to the rigid crosslinking structure of isocyanurate ring.  相似文献   

12.
Commercially, the alteration of a rubber formulation is usually made in such a way as to keep the hardness of the rubber product constant. This is because a specific hardness of the rubber product sets the limit to its practical applications. Therefore, in this paper, natural rubber (NR) vulcanizates containing various fillers were prepared to have the same hardness level, and their mechanical properties were compared and related to the degree of filler dispersion. The results show that higher amounts of carbon black (CB) and silica are needed for CB- and silica-filled natural rubber vulcanizates to achieve the same hardness value as a NR vulcanizate containing 6 phr of montmorillonite clay. At equal loading of fillers, clay-filled vulcanizate exhibits higher modulus, hardness, tensile strength and compression set, but lower heat build-up resistance and crack growth resistance than those of the vulcanizates containing conventional fillers. For the vulcanizate having the same hardness value, CB-filled vulcanizate gives the better overall mechanical properties followed by the clay-filled and silica-filled vulcanizates, respectively. The explanation is given as the better dispersion of carbon black, as can be seen in the SEM micrograph.  相似文献   

13.
In situ synthesis of polyaniline (PAni) coated pyrogenic or fumed silica (PCFS) and precipitated silica (PCPS) were carried out by the oxidative polymerization of aniline in presence of fumed silica (FS) and precipitated silica (PS). Both uncoated and PAni coated silica fillers were characterized through scanning electron microscope (SEM), infrared spectroscopy and thermo-gravimetric analysis (TGA) to evaluate particle morphology and physico-chemical character of coated and uncoated silica particles. Semi-conducting composites made from two different types of PAni coated silica fillers with NBR exhibit different trend in the variation of electrical properties under different temperature and pressure. These differences in electrical properties of two types of composites are mainly due to physico-chemical characteristics of filler particles as well as their distribution in the polymer matrix. This type of composites may be used as semi-conducting and ESD (electrostatic discharge) material.  相似文献   

14.
Polyolefin composites were prepared with CaCO3 fillers of different specific surface area. The fillers were surface treated with stearic acid between 0 and 100% surface coverage. As an effect of the treatment, surface tension of the fillers and also polymer/filler interaction decreased. The relation between interfacial interaction and mechanical properties of the composites was analysed by the equation developed earlier to describe the composition dependence of the tensile yield stress. The characteristics of the interphase were calculated, its yield stress decreases and thickness increases with increasing surface coverage. Reversible work of adhesion can be successfully related to the tensile yield stress, but a more complicated correlation exists between the thickness of the interphase and the strength of the interaction than assumed earlier. Other mechanical properties also change with the surface treatment; modulus and strength decrease and extensibility increases with decreasing polymer/filler interaction.  相似文献   

15.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

16.
Three series of new thermoplastic, high molecular weight, segmented thiopolyurethanes were synthesized by a one-step melt polymerization from newly obtained thiodiols, including bis[4-(2-hydroxyethyl)thiomethylphenyl]methane, bis[4-(3-hydroxypropyl)thiomethylphenyl]methane, and bis[4-(6-hydroxyhexyl)thiomethylphenyl]methane (BHHM), as chain extenders; hexamethylene diisocyanate; and 20–80 mol % poly(oxytetramethylene) glycol (PTMG; number-average molecular weight = 1000) as the soft segment. Solution polymerization with the chain extender BHHM gave considerably lower molecular weight polymers. The structures of all the polyurethanes were determined with Fourier transform infrared and X-ray diffraction analysis. The thermal properties of the polyurethanes were examined with differential scanning calorimetry and thermogravimetric analysis. Shore A/D hardness and tensile properties were also determined. All the polyurethanes showed partially crystalline structures; those obtained with 40–80 mol % PTMG were elastomers. An increase in the PTMG content decreased hardness, modulus of elasticity, and tensile strength, whereas elongation at break increased. BHHM-based polyurethanes obtained in the melt showed the best tensile properties. The polyurethanes exhibited definite glass transitions (−70 to −59 °C) that were nearly independent of the hard-segment content up to about 50 wt % (40–80 mol % PTMG), indicating the existence of mainly microphase-separated soft and hard segments. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1733–1742, 2001  相似文献   

17.
Commercial-grade fumed silica was dispersed by mechanical shearing and/or ultrasonic force to produce dispersed silica particles with different sizes. The light-scattering technique and a diagrammatic method of extrapolation used to eliminate the influence of particle interaction were applied to determine the size of the particles. Then, the effect of particle size on the gelation of fumed silica in sulphuric acid medium, as well as some electrochemical properties, such as ion transfer and redox capacities of lead, in the gelled electrolyte were examined. The results showed that the size of dispersed particles affected the gelation of fumed silica itself: with increasing size, the thixotropy of the system increased and the gelling time decreased, particularly for those particles obtained only by simple stirring. The strength of the gel increased with increasing particle size. At an identical silica content, the increase in particle size led to a decrease in the density of the particles: this weakened the three-dimensional structure of the silica particle network and reduced the efficiency of ion transfer. However, the effect of silica particle size on the redox capacities of lead was negligible.  相似文献   

18.
Response surface methodology was used for predicting the optimal composition of vegetable oil and carbon black in rubber compounding. Central composite rotatable design for two variables at five levels was chosen as the experimental design. The data obtained from measurement of properties was fitted as a two variable second order equation and were plotted as contour plots using programme developed in MATLAB v.5. It is observed from the contour plots that the increase in cross-link density caused by the formation of rubber mono-layer from its multi-layer on increasing the carbon black loading upto the central point (50 phr) of experimental region increases 300% modulus and elongation at break and reduces the ultimate properties like tear strength and tensile strength. On the other-hand hardness increases with increase in solid inclusion of carbon black. From the contours it is observed that the addition of vegetable oil upto 2-3 phr, cross-link density increases due to its coupling action leading to increase in hardness and modulus and lowering of ultimate properties like tensile strength and elongation at break. Addition of further amount of vegetable oil shows less coupling and more plasticising effect leading to increase in tear strength, tensile strength and elongation at break and decrease in hardness and 300% modulus.  相似文献   

19.
针对硫化过程对异戊橡胶中的填料絮凝及其性能的影响等问题, 通过改变硫化温度和硫化时间, 对比研究了炭黑、 白炭黑、 炭黑/白炭黑混合填料体系中的填料絮凝过程, 比较其动、 静态性能等的变化. 为了分析交联网络在填料絮凝过程中的贡献, 对比了工艺相同的含硫与不含硫胶料在不同温度和时间下的絮凝过程. 在含硫体系中, 佩恩效应主要来自于填料网络和橡胶网络的贡献; 而在不含硫体系中, 佩恩效应主要来自于填料网络的贡献. 研究结果表明, 橡胶网络的形成在一定程度上限制了填料的絮凝, 因此, 随温度升高, 含硫体系的佩恩效应减小, 而无硫体系的佩恩效应逐渐增加或先减小后增加. 随时间延长, 含硫胶料和无硫胶料的佩恩效应均增加, 但机制有所不同. 其中含硫胶料主要来自于交联网络的形成, 而无硫胶料主要来自于填料的絮凝. 絮凝动力学研究表明, 快速絮凝发生在较短的时间范围内, 在长时间范围内絮凝开始变慢但并不会停止, 且在较低温度(60 ℃)下絮凝仍会发生. 此外, 高温和长时间热处理导致材料的拉伸性能出现下降, 但动态疲劳性能有所增强.  相似文献   

20.
The interaction between precipitated silica and chloroprene rubber (CR) was investigated using a nuclear magnetic resonance (NMR) technique. The results reveal that the silanol groups on silica surface could chemically react with CR. Crosslinking of CR is therefore possible in the presence of silica at high temperature. The effects of silica and ethylene thiourea (ETU) loadings on properties of the silica-filled CR were thereafter investigated. With increasing silica loading, the compound viscosity increases considerably due to the dilution effect. As silica could act as a curative for CR, increasing silica loading results in both faster cure rate and increased crosslink density. The optimum tensile strength is found at approximately 30 phr of silica loading. The results also show that silica loading has little effect on most aging properties, except the relative modulus in which it increases rapidly with increasing silica loading due to the post curing effect. Similar to the effect of silica loading, the compound viscosity, cure rate and crosslink density are all increased with increasing ETU loading. The tensile strength is, on the other hand, slightly affected by ETU loading. Exception is found at high loading where the tensile strength drops noticeably. Interestingly, aging resistance of the vulcanizate is found to improve with the addition of ETU. Explanation is given by the hindrance capability of ETU to post curing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号