首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
Abstract

The kinetics of phase-transfer-agent-assisted free-radical polymerization of methyl methacrylate using K2S2O8 as the water-soluble initiator and triethylbenzylammonium chloride (TEBA) as the phase-transfer catalyst (PTC) was investigated in toluene-water biphase media at 60°C. The effect of varying [MMA], [K2S2O8], [TEBA], [H+], the ionic strength of the medium, and the temperature on the rate of polymerization (R p) was studied. R p was found to be proportional to [MMA]2, [K2S2O8]1, and [TEBA]0.5. Based on the kinetic results, a mechanism involving initiation of polymerization by phase-transferred S2O8 2- and termination by Q+ (quaternary ammonium ion) is proposed.  相似文献   

2.
The kinetics of the K2S2O8-initiated inverse emulsion polymerization of aqueous sodium acrylate solutions in kerosene with Span 80 as the emulsifier has been studied. The conversion-time curves are S-shaped. The following expressions have been obtained for the maximum rate of polymerization and the molecular weight of the polymers under the experimental conditions investigated: Rmax ∞ [K2S2O8]0.78[sodium acrylate]1.5[Span 80]0.1, (OVERLINE)M(/OVERLINE)u ∞ [K2S2O8]−0.37[sodium acrylate]2.9[Span 80]−0.2. The activation energy for the maximum rate of polymerization is 94.8 kJ mol−1. The results suggest a monomer–droplet–nucleation mechanism for the system studied. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Summary Methacrylamide was polymerized in aqueous medium at 35 ± 0.2 °C with the redox pair K2S2O8/ thiomalic acid (mercaptosuccinic acid) in dark under nitrogen atmosphere. The effect of monomer, K2S2O8 and thiomalic acid concentrations and temperature on the rate of polymerization was studied. The kinetics of polymerization was followed iodometrically.The role of the addition of complexing metal ions and a series of aliphatic alcohols was also investigated. The initial rate of polymerization was found to be independent of the concentration of thiomalic acid. Rate may be expressed by the following equation:R p [M]1.5[K2S2O8]0.76. The energy of activation was found to be 9.0 Kcal/deg/mole.With 4 figures  相似文献   

4.
The polymerization of acrylamide (AAm) initiated by the combination of N-(N', N'-dimethylaminomethylene)methacrylamide (DMAMMA) or N, N,-dimethylaminoethyl methacry-late with potassium persulfate were studied kinetically. The rate equation for the AAm polymerization initiated by the above initiation systems were given asRp- Kp[AAm][K2S2O8]1/2[DMAMMA]1/2 Rp=Kp[AAm][K2S2O8]1/2[DMAEMA]1/2 respectively. The overall activation energies for the above polymerization were determined to be 8.7 Kcal/mol and 9.2 Kcal/mol respectively. The UV analysis for the PAAm initiated by the above initiation systema showed that the polymerizable amines,DMAMMA and DMAEMA notonly joined the redox initiation but also incorprated into the AAm polymer chains. The super high molecule weight,107of PAAm were obtained by using these initiation systems.  相似文献   

5.
The ionic liquid 1‐butyl‐3‐methylimidazolium hydrogensulfate, [bmim]HSO4, turned out to be resistant even to strong oxidizers like SO3. Thus, it should be a suitable solvent for the preparation of polysulfates at low temperatures. As a proof of principle we here present the synthesis and crystal structure of K2(S2O7)(H2SO4), which has been obtained from the reaction of K2SO4 and SO3 in [bmim]HSO4. In the crystal structure of K2(S2O7)(H2SO4) (orthorhombic, Pbca, Z = 8, a = 810.64(2) pm, b = 1047.90(2) pm, c = 2328.86(6) pm, V = 1978.30(8) Å3) two crystallographically unique potassium cations are coordinated by a different number of monodentate and bidentate‐chelating disulfate anions as well as by sulfuric acid molecules. The crystal structure consists of alternating layers of [K2(S2O7)] slabs and H2SO4 molecules. Hydrogen bonds between hydrogen atoms of sulfuric acid molecules and oxygen atoms of the neighboring disulfate anions are observed.  相似文献   

6.
V2O3(OH)4(g), Proof of Existence, Thermochemical Characterization, and Chemical Vapor Transport Calculations for V2O5(s) in the Presence of Water By use of the Knudsen-cell mass spectrometry the existence of V2O3(OH)4(g) is shown. For the molecules V2O3(OH)4(g), V4O10(g), and V4O8(g) thermodynamic properties were calculated by known Literatur data. The influence of V2O3(OH)4(g) for chemical vapor transport reactions of V2O5(s) with water ist discussed. ΔBH°(V2O3(OH)4(g), 298) = –1920 kJ · mol–1 and S°(V2O3(OH)4(g), 298) = 557 J · K–1 · mol–1, ΔBH°(V4O10(g), 298) = –2865,6 kJ · mol–1 and S°(V4O10(g), 298) = 323.7 J · K–1 · mol–1, ΔBH°(V4O8(g), 298) = –2465 kJ · mol–1 and S°(V4O8(g), 298) = 360 J · K–1 · mol–1.  相似文献   

7.
The kinetic of polymerization of aeqlamide (AM ) inihated by the combination of N - (N,'N L dimethylaminomethyl ) acrylamide (DMAAM ) with potassiumpersulfate was stUdied. The rate equation was given as:Rp= Kp[DMAAM]0.5[K2S2O8]0.5 [AM]The overall aCtivation energy was determined to be 27.86 KJ/mol. DMAAMwas shown not only joined the ndox initiahon but also incorporated intO thepolymer chains, so that the high molecular weight 107 of polyaCrylamide was obtained but the distribution of molecular weight was broad. The effect of additives on molecular weight and its distribution has been studied.  相似文献   

8.
The polymerizable surfactant sodium 11-acrylamidoundecanoate (Na 11-AAU) was synthesized from acryloyl chloride and 11-aminounde-canoic acid. It had a low critical micelle concentration (CMC) of 4.3 × 10?4 mol/L. Polymerization of Na 11-AAU initiated by K2S2O8 was very fast in aqueous solution, with an activation energy of only 63.2 kJ/mol. The polymerization followed first-order kinetics with respect to Na 11-AAU and one-half order with respect to K2S2O8. The MW of poly(Na 11-AAU) was very high (1–2 million) but the MWD was rather narrow ( M w / M n = 1.45). Polymerization of Na 11-AAU in the micellar state may be responsible for the phenomena observed.  相似文献   

9.
On the Oxidation of Intermetallic Phases: The Oxoplumbates(II) K6[Pb2O5] [1] and K4[PbO3] [2] Very pale yellow crystals of K6[Pb2O5] were obtained by heating a wellground mixture of LiPb und K2O2 (K2O2: LiPb = 2.5:1) in Ag-tubes (550°C; 40 d). The crystal structure, triclinic, space group P1 , a = 1 326.7(6); b = 758.8(4); c = 637.0(3) pm; α = 92.17(3)°; β = 94.41(3)°; γ = 112.85(4)°; Z = 2 was determined (four-circle diffractometer data, Mo? K, 3 270 Io(hkl), R = 8.0%, Rw = 3.5%, parameters see text). The pale yellow crystals of K4[PbO3] were received by heating KPb and K2O2 (K2O2: KPb = 3.3:2) in Ni-tubes (450°C; 17 d). The crystal structure (orthorhombic, space group Pbca with a = 658.2(1); b = 1 131.8(4); c = 1 872.2(6) pm; Z = 8) was refined (four-circle diffractometer data, Mo? K, 2 003 Io(hkl), R = 4.9%, Rw = 2.8%). The Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN), the Mean Fictive Ionic Radii (MEFIR) and the Charge Distribution (CHARDI) are being calculated for both oxides.  相似文献   

10.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

11.
Summary Peroxodisulfate ion readily oxidises CoII-YOH [YOH =N(2-hydroxyethyl)ethylenediaminetriacetate] with the formation of an intermediate complex. The kinetics of the electron-transfer step follow the rate law: Rate = 2kHKH[H+][S2O8]2-[CoII-YOH]/(1 + KH[H+]) where [S2O8]2– is the total peroxodisulfate concentration, kH is the rate constant for the electron-transfer process, and KH is the pre-equilibrium protonation constant. Activation parameters have been evaluated. The intermediate, which was identified spectrophotometrically, slowly rearranges to the quinquedentate species Co(YOH)(H2O). The rate of this rearangement has also been measured.  相似文献   

12.
The aqueous polymerization of acrylamide initiated by the potassium persulfate/lactic acid system catalyzed by Ag+ ions has been studied iodometrically over the temperature range from 35 to 50 ± 0.2°C. The rate of polymerization is governed by the expression Rp ∞ [M]0.8[K2S2O8]1.0[Ag]1.0 The deviation from normal kinetics has been studied. A tentative mechanism of initiation is suggested. The overall energy of activation is 5.52 kcal/mol.  相似文献   

13.
The First Oxocobaltate of the Type A2CoIIO2: K2CoO2 = K4[OCoO2CoO] By “reaction with the cylinder surface” of intimate mixtures of K2O and CdO (molar ratio 1:1) in closed Co-Cylinders at 450°C during 73 d dark-red single-crystals of K2CoO2 were obtained. Structure solution and refinement (four-circle diffractometer-data, MoKα , 1 567 independent Io(hkl), none was omitted, R = 3.25%, Rw = 2.67%) result in a monoclinic unit cell containing anions [Co2O4]4? of two connected triangles similar to those of Rb10[CoIO2]2[CoO4]. MAPLE-values and Charge-distributions are given and discussed.  相似文献   

14.
Polymerization of the symmetrical nonconjugated diolefin, N,N′-methylene bisacrylamide, was carried out using peroxodisulphate ion -Fe2+ as redox initiator. The rate of polymerization is found to depend on [M]3/2 and [S2O82?]1/2 and independent of [Fe2+] over a range. A polymerization mechanism involving cyclopolymerization in the propagation step is suggested. Evidence in favor of the cyclopolymerization mechanism is discussed. Evaluation of the rate parameters indicates that the deactivation of the primary radical SO4? by Fe2+ ion is a factor to be reckoned with.  相似文献   

15.
Inhaltsübersicht. Erstmals wurden klar durchscheinende, orange-farbene Einkristalle von Cs2Li14[Tb3O14] aus Cs2TbO3 und Li2O (Tb: Li = 1:5) dargestellt [550°C, 21 d, verschlossenes AuRohr]. Es liegt der K2Li14[Pb3O14]-Typ vor [Vierkreisdiffraktometerdaten, PW 1100, MoKä-Strahlung, 660 Io(hkl), R = 4,8%, Rw = 3,4%, Immm, a = 1293,5(8), b = 792,6(3), c = 740,4(3) pm, Z = 2, d = 4,65]. Ebenfalls neu wurde K2Li14[Zr3O14] in Form farbloser Einkristalle durch Tempern inniger Gemenge von K2O, Li2O und ZrO2 (K: Li: Zr = 1:4:1,5) dargestellt [900°C, 14 d, geschlossene Ni-Bombe] und röntgenographisch untersucht. Die Strukturverfeinerung [612 Io(hkl), Vierkreisdiffraktometerdaten, PW 1100, MoKα-Strahlung, R = 5,9%, Rw = 5,3%, Immm, a = 1244,6, b = 776,4, c = 724,3 pm, Z = 2] bestätigt die Isotypie mit K2Li14[Pb3O14]. Der Madelunganteil der Gitterenergie, MAPLE, Effektive Koordinationszahlen, ECoN, diese über Mittlere Effektive Ionenradien, MEFIR, wurden berechnet. Für die nun bekannten Vertreter dieses Typs wurde ein Isotypievergleich vorgenommen. New Compounds of the K2Li14[Pb3O14] Type: Cs2Li14[Tb8O14] and K2Li14[Zr3O14] For the first time Cs2Li14[Tb3O14] has been prepared as orange single crystals from Cs2TbO3 and Li2O (Tb: Li = 1:5) [550°C, 21 d, sealed Au-Tube]. Structure Refinement [four-circle diffractometer data, PW 1100, MoKα radiation, 660 Io(hkl), R = 4.8%, Rw = 3.4%, Immm, a = 1293.5(8), b = 792.6(3), c = 740.4(3) pm, Z = 2, d = 4.65] confirms isotypy with K2Li14[Pb3O14]. K2Li14[Zr3O14] has also been prepared as colorless single crystals from K2O, Li2O, and ZrO2 (K: Li: Zr = 1:4:1.5), [900°C, 14 d, closed Ni-cylinder] and investigated by x-ray [612 Io(hkl), four-circle diffractometer data, PW 1100, MoKα radiation, R = 5.9%, Rw = 5.3%, Immm, a = 1244.6, b = 776.4, c = 724.3 pm, Z = 2]. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, the latter derived from Mean Effective Fictive Ionic Radii, MEFIR, are calculated. A detailed comparison of the structures is carried out.  相似文献   

16.
A model was proposed to calculate some thermodynamic parameters for the acid dissolution process of a bentonite containing a calcium-rich smectite as clay mineral along with quartz, opal and feldspar as impurities. The bentonite sample was treated with H2SO4 by applying dry method in the temperature range 50–150°C for 24 h. The acid content in the dry bentonite-sulphuric acid mixture was 45 mass%. The total content (x) of Al2O3, Fe2O3 and MgO remained in the undissolved sample after treatment was taken as an equilibrium parameter. An apparent equilibrium constant, K a, was calculated for each temperature by assuming K a=(x mx)/x where x m is the total oxide content of the natural bentonite. Also, an apparent change in Gibbs free energy, ΔG ao, was calculated for each temperature by using the K a value. The graphs of lnK a vs. 1/T and ΔG ao vs. T were drawn and then the real change in both the enthalpy, ΔH o and the entropy, ΔS o, values were calculated from the slopes of the straight lines, respectively. Inversely, real ΔG o and K values were calculated from the real ΔH o and ΔS o values through ΔG o = −RT ln K = ΔH oTΔS o equation. The best ΔH o and ΔS o fittings to this relation were found to be 65687 J mol−1 and 164 J mol−1K−1, respectively.  相似文献   

17.
A New Mixed-Valent Oxide of Cobalt(I, II): Rb5Co2O4 For the first time we obtained a new mixed-valent oxide of mono- and divalent Cobalt. Black-red single-crystals of Rb5Co2O4 were prepared by heating powders of “Rb6CdO4” in closed Co-cylinders at 500° during 48 days. Structure solution and refinement are covered by two measurements with four-circle diffractometers. MoKα : 2 145 Io(hkl), out of 2 818 Io(hkl), R = 9.85%, Rw = 5.93% AgKα : 1 813 Io(hkl) out of 4 007 Io(hkl), R = 9.46%, Rw = 6.51%) and confirm the space-group P1 . The lattice constants are a = 696.4(1) pm, b = 922.2(3) pm, c = 958.9(3) pm , α = 117.99(2)°, β = 89.96(2)°, γ h= 108.12(2)°, Z = 2 According to its composition Rb10[OCoO]2[OCoO2CoO] the structure is built up by two Co atoms of chemically and crystallographically different nature. We find isolated dumb-bell-like anions [O? Co? O]3? being already known with monovalent Co (e. g. K3CoO2) together with units [OCoO2CoO]4? of two connected triangles CoO3 being well-known from K2BeO2 ? K4[Be2O4]. ECoN/mEFIR calculations are made starting with values obtained by a new procedure called “MEFIR-FIT”.  相似文献   

18.
The reversible addition-fragmentation chain-transfer (RAFT) polymerization of a tertiary sulfonium-containing zwitterionic monomer (N-acryloyl-L-methionine methyl sulfonium salt: A-Met[S+]-OH) was performed in aqueous media in the presence of a water-soluble chain-transfer agent (CTA). Several parameters, such as the radical initiator, nature of the salt used as an additive, polymerization temperature, and solvent (water, buffer solution, and mixed solvents), were studied. The polymerization of A-Met(S+)-OH in acetate buffer using a trithiocarbonate-type CTA having two carboxylic acid moieties proceeded in a controlled fashion at 45°C, as confirmed by the low polydispersity of the products (M w/M n < 1.1) and pre-determined molecular weights. Poly(ethylene glycol)-based macro-CTA was also employed for the polymerization of A-Met(S+)-OH in mixed solvents (H2O/EtOH and H2O/DMF = 70/30 vol%) to afford novel nonionic-zwitterionic double hydrophilic block copolymers. The chain extension of the hydrophilic poly(N,N-dimethylacrylamide) macro-CTA with A-Met(S+)-OH was well controlled in pure water under the appropriate conditions, resulting in the formation of block copolymers with “as-designed” chain structures and relatively low dispersities (M w/M n < 1.3). The resulting sulfonium-containing double hydrophilic block copolymers having optimal nonionic/zwitterionic balance were efficient protein-stabilizing agents.  相似文献   

19.
Monodisperse latex particles with surface amino groups were prepared by a two‐step emulsion polymerization. In the first step, the seeds were synthesized by batch emulsion polymerization of styrene; and in the second step, two different amino‐functionalized monomers [aminoethylmethacrylate hydrochloride (AEMH) and vinylbenzylamine hydrochloride (VBAH)], two different initiator systems (K2S2O8 and K2S2O8/Na2S2O5) and mixtures of emulsifiers sodium dodecylsulfate (SDS) and Tween 21 were used to synthesize the final latexes. To characterize the final latexes, conversions were obtained gravimetrically and particle size distributions and average particle diameters were determined by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). The amount of amino groups was determined by the SPDP (N‐succinimidyl 3‐(2‐pyridyldithio)propionate) method. The influence of the different conditions used to synthesize the latexes on the colloidal stability of the particles was evaluated by measuring the diameters of the final latexes dispersed in solutions at different pHs and ionic strengths. The most stable latexes were obtained using the smallest seed, VBAH monomer, and the K2S2O8/Na2S2O5 initiator system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4230–4237, 2000  相似文献   

20.
Various crown ethers were used as phase-transfer catalysts for free radical polymerizations of some water-insoluble vinyl monomers such as acrylonitrile, methylmethacrylate and styrene with persulfate as initiator. The catalytic abilities of these crown ethers for free radical polymerization of acrylonitrile with S2O82?ion as an initiator were in the order: 18-crown-6 > 15-crown-4 > 12-crown-4 > benzo-15-crown-5 > dibenzo-18-crown-6. Among various persulfates such as Na2S2O8 K2S2O8 and (NH4)2S2O8, ammonium persulfate was the optimum initiator for the polymerization of acrylonitrile catalyzed by 18-crown-6 or 15-crown-5. Among the organic solvents used, chloroform seems to be the best solvent for the catalytic polymerization of acrylonitrile. An apparent activation energy of 72.9 kJ mol?1 was observed for the polymerization of acrylonitrile. The catalytic reaction rates of free radical polymerization for these hydrophobic vinyl monomers were in the order: acrylonitrile > methylmethacrylate > styrene > isoprene. Effects of concentrations of crown ether, initiator, and nitrogen on the polymerization of these vinyl monomers were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号