首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been known that the carbon black (CB) network is responsible for the electrical and mechanical behaviors of filled rubber. Due to the complexity involved in the filled rubber in relation to the conductive mechanism of the CB network, there has been little work concerned with simulation of the electrical behavior at large strains. Based upon an infinite circuit model, the electrical resistivity of CB filled rubber under elongation is simulated. For CB (N330) filled natural rubber with volume fraction of 27.5%, the simulated electrical resistivity increases with elongation at small stains, corresponding to the breakup of the agglomerates. The reduction in resistivity at larger strains corresponds to the decrease of the junction width, which results in a decrease of the contact resistance. Good agreement is found between the simulations and the experimental data available in the literature. The simulated results confirm the effects of the breakdown of the CB network and the alignment of CB aggregates under strain on the electrical resistivity.  相似文献   

2.
Due to the high electrical conductivity of carbon black (CB) particles, the presence of CB improves the conductivity of filled rubbers. The impedance spectra of CB filled rubber were simulated using an infinite resistor‐capacitor (RC) circuit by considering the tunneling conduction mechanism for the CB contact regions. The calculated results had a similar appearance to the experimental results, i.e., the Cole‐Cole plot was a semi‐circle and a peak appeared in a plot of the imaginary component of complex impedance with respect to the frequency from which the characteristic frequency was obtained. For a simple RC circuit in parallel connection, the logarithm of the characteristic frequency should be a linear function of the 1/3 power of the average number of primary particles per aggregate. A slight deviation from the line found in the simulations was attributed to the network contribution. Additionally, low CB loading had little effect on the characteristic frequency, in accordance with the experimental data, while high loading had a marked effect. Furthermore, the calculations showed that the characteristic frequency was affected not only by the distribution of individual CB aggregates, but also by the percentage of agglomerates at high CB loading.  相似文献   

3.
Blends of ethylene-propylene diene terpolymer/acrylonitrile butadiene copolymer (EPDM/NBR) loaded with different types [(N326-HAF) and (N774-SRF)] and ratios of carbon black (CB) fillers were prepared. The mechanical properties of the EPDM/NBR rubber blends unloaded and loaded with different ratios of CB were investigated. Among the blends, the one with 75% EPDM and 25% NBR, both loaded and unloaded with CB, were found to exhibit the highest tensile strength and elongation at break. The observed changes in the mechanical properties of the blends were correlated to the morphology as observed by scanning electron microscopy. The changes of the electrical resistivity of the rubber blend composites during compression were investigated. The experimental results were explained from the position that an external pressure induces either an increase or decrease of the resistivity of the blend composites according to whether annihilation or creation of effective conductive paths occurs, respectively.  相似文献   

4.
The dynamic fatigue behaviors of natural rubber (NR) filled with carbon black (CB) and both nanoclay (NC) and CB at same hardness was evaluated using the stepwise increasing strain test (SIST) and long-term testing. Compared with NR/CB composites, NR/CB/NC nanocomposites exhibited higher fatigue-limited strain, stronger dynamic stress relaxation, and longer compression fatigue life. By examining the fracture morphologies, nonlinear viscoelastic behavior, and hysteresis loss of filled NR, it was found that NR, synergisticly reinforced by NC and CB, exhibited improved anti-fatigue ability than NR filled with CB due to stronger filler–filler interactions between NC and CB (a local filler network) and the high aspect ratio and typical lamellar structure of NC.  相似文献   

5.
An improved process was developed for the production of carbon black (CB)–filled styrene butadiene rubber masterbatch (SBR-CB-MB) using a simple latex/CB mixing technology; the improvement comprised processing the CB as an emulsifier-free aqueous suspension by high-rate shearing. Tensile and tear strength, dynamic compression behaviors, the Payne effect, equilibrium swelling and bound rubber of the SBR-CB-MB and dry mixing CB filled SBR (SBR-CB-DM), covering a wide range of CB loading (45–70 phr), were investigated and compared. It was found that the tensile and tear strength, heat buildup and compression set, abrasion volume loss, and the Payne effect of the SBR-CB-MB were lower than those of the SBR-CB-DM, while the bound rubber content were higher, indicating good CB/rubber interaction in the SBR-CB-MB. SEM analysis showed that no free CB could be found on the surface or inside of the granular SBR-CB-MB particles, indicating good CB dispersion in the rubber matrix.  相似文献   

6.
二次渗滤现象对镍基导电硅橡胶屏蔽性能的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
李鹏  刘顺华  陈光昀 《物理学报》2005,54(7):3332-3336
通过对镍粉填充RTV硅橡胶的电阻率的测量确定了镍基导电硅橡胶的渗滤值点. 在此基础上 添加不同含量的炭黑,发现了有别于单一导电填料填充两相体系的渗滤值规律,即二次渗滤 现象. 根据导电机理模型推测了二次渗滤现象产生的原因,并对实验结果进行了拟合. 同时 针对高导电硅橡胶的屏蔽性能,发现可用Schelkunoff理论较好地描述其屏蔽效果. 结合二 次渗滤现象,分析了其对屏蔽性能的影响. 关键词: 镍粉 渗滤阈值 二次渗滤现象 导电机理  相似文献   

7.
Carbon black (CB) filled powdered natural rubber [P(NR/N234)] was prepared using a patented method of latex/CB coagulation technology. The influence of curing recipes and CB contents on the curing, mechanical, and dynamic properties were studied in depth, and the results were compared with that of NR/N234 compounds based on traditional dry mixing of bale NR and CB. The results showed that, compared with NR/N234, P(NR/N234) showed higher tensile strength, tear strength, rebound elasticity and flexibilities, and the antiabrasion properties were similar, while the dynamic temperature-build-up and dynamic compression permanent set were about 50% of that of NR/N234. The analysis based on scanning electron micrographs (SEM) and the Payne effect showed that the fine dispersion of CB in the rubber and the enhanced interaction between CB and rubber contributed to the excellent properties of P(NR/N234), sufficient that they make P(NR/N234) a potential material for the tread compounds of heavy-duty all-steel cord radial tires.  相似文献   

8.
Vulcanization and reinforcement are two important factors contributing to the properties of vulcanized rubber. In order to investigate the influence of carbon black (CB) on chemical crosslinking, three groups of samples with different crosslink densities were prepared. In each group with the same crosslink density, different amounts of CB were introduced. Data fitting showed that delta torque (ΔM = M HM L, the difference between the highest and lowest torques during curing) in the cure curves of each group had a good linear relationship with CB load and extrapolation of the fitting lines almost intercepted the x coordinate at the same value, which indicated that CB had no influence on the chemical crosslinking of the rubber. To verify the above result, a series of nonfilled natural rubber (NR) vulcanizates with different crosslink densities were studied using equilibrium swelling and the swelling ratios were compared with those of corresponding CB filled rubbers with the same sulfur and accelerator amount. The results of both the equilibrium swelling and NMR relaxation parameter measurements showed that CB filled vulcanizates had higher apparent crosslink densities than those of unfilled ones due to the strong interaction between rubber molecules and the surface of the CB particles. The swelling ratios of filled rubbers had a parallel relationship with those of the unfilled ones which indicated that CB had little influence on chemical crosslink density introduced by chemical vulcanization.  相似文献   

9.
Thermo-electrical characterizations of hybrid polymer composites, made of epoxy matrix filled with various zinc oxide (ZnO) concentrations (0, 4.9, 9.9, 14.9, and 19.9 wt%), and reinforced with conductive carbon black (CB) nanoparticles (0.1 wt%), have been investigated as a function of ZnO concentration and temperature. Both the measured DC-electrical and thermal conductivities showed ZnO concentration and temperature dependencies. Increasing the temperature and filler concentrations were reflected in a negative temperature coefficient of resistivity and enhancement of the electrical conductivity as well. The observed increase in the DC conductivity and decrease in the determined activation energy were explained based on the concept of existing paths and connections between the ZnO particles and the conductive CB nanoparticles. Alteration of ZnO concentration with a fixed content of CB nanoparticles and/or temperature was found to be crucial in the thermal conductivity behavior. The addition of CB nanoparticles to the epoxy/ZnO matrix was found to enhance the electrical conduction resulting from the electronic and impurity contributions. Also, the thermal conductivity enhancement was mostly attributed to the heat transferred by phonons and electrons hopping to higher energy levels throughout the thermal processes. Scanning electron microscopy and energy-dispersive spectroscopy were used to observe the morphology and elements’ distribution in the composites. The observed thermal conductivity behavior was found to correlate well with that of the DC-electrical conductivity as a function of the ZnO content. The overall enhancements in both the measured DC- and thermal conductivities of the prepared hybrid composites are mainly produced through mutual interactions between the filling conductive particles and also from electrons tunneling in the composite's bulk as well.  相似文献   

10.
The effect of isothermal treatment on network formation of nanoscale dispersed carbon black (CB) particles in mild-compounded isotactic polypropylene (iPP)/CB composite is investigated. Network formation of CB took place in a quiescent melt without any flow and expansion since the isothermal treatment of the composite was carried out under high pressure conditions. TEM was used to inspect the network formation of the well-dispersed CB. Resistivity temperature and dynamic rheological behaviors of samples before and after isothermal treatment were examined to investigate the relationship between fillers’ network formation and electrical conductivity enhancement.  相似文献   

11.
For styrene-butadiene rubber (SBR) compounds filled with the same volume fraction of carbon black (CB), precipitated silica and carbon–silica dual phase filler (CSDPF), filler-rubber interactions were investigated thru bound rubber content (BRC) of the compounds and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the BRC of the compound was highly related to the amount of surface area for interaction between filler and rubber, while the solid-state 1H low-field NMR spectroscopy was an effective method to evaluate the intensity of filler-rubber interaction. The silica-filled compound showed the highest BRC, whereas the CB-filled compound had the strongest filler-rubber interfacial interaction, verified by NMR transverse relaxation. The strain sweep measurements of the compounds were conducted thru a rubber process analyzer; the results showed that the CSDPF-filled compound presented the lowest Payne effect, which is mainly related to the weakened filler network structure in polymer matrix. The temperature sweep measurement, tested by dynamic mechanical thermal analysis, indicated that the glass transition temperature did not change when SBR was filled with different fillers, whereas the storage modulus in rubbery state and the tanδ peak height were greatly affected by the filler network structure of composites.  相似文献   

12.
Nanoparticle chain aggregates (NCAs) are often sized and collected using instruments that rely on inertial transport mechanisms. The instruments size segregate aggregates according to the diameter of a sphere with the same aerodynamic behavior in a mechanical force field. A new method of interpreting the aerodynamic diameter of NCAs is described. The method can be used to calculate aggregate surface area or volume. This is useful since inertial instruments are normally calibrated for spheres, and the calibrations cannot be directly used to calculate aggregate properties. A linear relationship between aggregate aerodynamic diameter and primary particle diameter based on published Monte-Carlo drag calculations is derived. The relationship shows that the aggregate aerodynamic diameter is independent of the number of primary particles that compose an aggregate, hence the aggregate mass. The analysis applies to aggregates with low fractal dimension and uniform primary particle diameter. This is often a reasonable approximation for the morphology of nanoparticles generated in high temperature gases. An analogy is the use of the sphere as an approximation for compact particles. The analysis is applied to the collection of NCAs by a low-pressure impactor. Our results indicate the low-pressure impactor collects aggregates with a known surface area per unit volume on each stage. Combustion processes often produce particles with aggregate structure. For diesel exhaust aggregates, the surface area per unit volume calculated by our method was about twice that of spheres with diameter equal to the aerodynamic diameter. Measurements of aggregates collected near a major freeway and at Los Angeles International Airport (LAX) were made for two aerodynamic cutoff diameter diameters (d a,50), 50 and 75 nm. (Aerodynamic cutoff diameter refers to the diameter of particles collected with 50% efficiency on a low-pressure impactor stage.) Near-freeway aggregates were probably primarily a mixture of diesel and internal combustion engine emissions. Aggregates collected at LAX were most likely present as a result of aircraft emissions. In both measurements, the aggregate aerodynamic diameters calculated from the primary particle diameter were fairly close to the stage cutoff diameter. The number of primary particles per aggregate varied one order of magnitude for particles depositing on the same stage. The average aggregate surface area per unit volume was 2.41 × 106 cm−1 and 2.59 × 106 cm−1 (50 nm d a,50) and 1.81 × 106 cm−1 and 1.68 × 106 cm−1 (75 nm d a,50) for near-freeway and LAX measurements, respectively. These preliminary measurements are consistent with values calculated from theory.  相似文献   

13.
The pyrolytic carbon black (PCB) made from used tires was used in styrene‐butadiene rubber (SBR). The basic properties of PCB were characterized. The effects of PCB on the processing properties of SBR compounds and the mechanical properties of vulcanizates were investigated and compared with other traditional fillers. The results showed that the chemical composition of PCB was mainly C, O, S, Zn and Si. The content of ash wa as much as 13.3%. The SEM photos showed that the primary particle size of PCB was smaller than that of N774, but the aggregate size was larger than that of N774. The effect of PCB on the processing properties of SBR compounds was similar to that of other fillers. The reinforcing effect of PCB was similar to that of N774, but inferior to that of N330.  相似文献   

14.
Fumed oxides produced in gas‐phase processes, such as silicas and aluminum oxide, consist of a cluster of aggregated primary particles. The aggregate size of these particles is an important variable in many applications. However, current procedures for measuring particle sizes all assume that the particles have a spherical shape and are thus not truly capable of determining aggregate size. The results of such particle size measurements are consequently called “equivalent spherical diameter” (ESD), but these results vary from method to method. This publication shows that it is feasible to use the number of primary particles per aggregate, rather than the ESD, as a measure for the particle size of clusters of this type. The method is based on dynamic light scattering (photon correlation spectroscopy, PCS), which has proven itself in the analysis of fumed oxides. A numerical simulation based on random, computer‐generated model aggregates is used to modify the well‐known Stokes‐Einstein equation so that the number of primary particles can be determined.  相似文献   

15.
The effects of organically modified clay (OMC) incorporation on the microstructure and the electrical and mechanical properties of polypropylene (PP)/polyethylene (PE) blends filled with carbon nanotubes (CNT) were investigated. All blends were prepared by melt mixing in a batch mixer. The microstructures were characterized by scanning electron microscopy. In the OMC:CNT filled blends, the CNT were found to selectively localize within the PE phase, while the clay particles were observed in the PP phase. The electrical resistivity of OMC:CNT filled blends did not show any significant change as a result of the clay addition since it was localized in the CNT-free phase. On the other hand, the addition of clay degraded the blends' mechanical properties due to the poor adhesion between the OMC and the PP matrix.  相似文献   

16.
本文测量了沿Nd3Co单晶b轴在不同压力下电阻率随温度的变化,并对Nd3Co的居里温度和磁性转变场随压力的变化规律进行了研究.结果表明:随着压力的增大,样品剩余电阻率逐渐减小,居里温度平均每GPa 升高2.1 K,磁性转变场平均每GPa增大0.9 T.通过对结果的分析,可以认为压力增大使样品中原子间距变小,晶粒间的连接更加紧密,导致电阻率减小;原子间距变小,4f电子和传导电子间的关联增强,导致样品中Nd离子磁矩的转向变得困难,从而磁性转变场增大.  相似文献   

17.
The influence of carbon black (CB) on rubber reinforcement was studied. A new reinforcement model, the super network structure model, was proposed. The super network is composed of irreversible chemical crosslinks and reversible physical crosslinks due to CB–rubber interaction. The two crosslink systems are not isolated but interlaced with each other. With increased interaction strength of the reversible physical crosslinks, the CB reinforcement became more effective.  相似文献   

18.
Carbon black (N234) and silica (Vulksail N) with a silane coupling agent Si-69 were chosen as reinforcing fillers in butyl rubber (IIR). The rheological behavior of the IIR compounds and the dynamic mechanical properties of IIR vulcanizates were investigated with a rubber processing analyzer and dynamic mechanical analysis (DMA) to examine the filler dispersion in the rubber matrix and the interaction between filler and matrix. The data indicated that the N234 filled IIR compounds had more filler networks than those filled with silica. Filler networks first appeared at 30 phr N234 and 45 phr silica with silane coupling agent Si-69. The interaction between N234 and IIR was far stronger than that between silica and IIR. However, the silica Vulksail N filled IIR had better wet-grip and lower rolling resistance compared to the carbon black-filled IIR should IIR be chosen as a substitute of styrene-butadiene rubber (SBR) in tire tread. The reinforcing factor, R, R (related to the difference in tan d peak height at Tg for the filled and nonfilled rubbers), also demonstrated that the N234-IIR interaction was stronger than for the silica. IIR with 30 phr N234 exhibited the largest tensile strength, 20.1 MPa, for those vulcanizates examined. The tensile and tear strengths of N234 filled IIR were higher than those of IIR with similar amounts of silica. Thus, it was concluded that N234 is a more active reinforcing filler in IIR than silica (Vulksail N) even with a silane coupling agent (Si-69).  相似文献   

19.
Some materials show an abrupt increase in resistivity when the temperature changes only over a few degrees. This phenomenon, known as PTCR effect (positive temperature coefficient of resistivity), has been largely studied in the last few years, due to its potential applications in industry. Particularly, it can be used in auto controlled heaters, temperature sensors, protection circuits and in security systems for power electronic circuits.In this work we present the study of the electrical properties of the percolating system carbon black particles filled with ethylene butylacrylate copolymer composite (EBA), in the temperature range from −100 to 100 °C and in frequencies between 10 Hz and 100 kHz. The PTCR effect was observed at temperatures slightly above the room temperature, for concentrations higher than that of the percolation critical concentration.The mechanism responsible for the change in resistivity, at this stage, is predominantly tunnelling, wherein the conductive filler particles are not in physical contact, and the electrons tunnel through the insulating gap between them. At low temperatures, such as below and close to the glass transition temperature, the DC conductivity obeys the Arrhenius law. The calculated activation energy values are independent of carbon black contents inside the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.  相似文献   

20.
To evaluate the reinforcing potential of pyrolytic carbon black, styrene-butadiene rubber (SBR) was filled with pelletized pyrolytic carbon black (pCBp), N660 industrial CB, their blend in a 1/1 ratio, and the latter also in the absence and presence of additional organoclay (OC). The Shore A hardness of the filled SBR gums was 65 ± 2°. Effects of the compositions on the filler dispersion, cure behavior, dynamic mechanical thermal parameters (including the Payne effect), tensile mechanical (including the Mullins effect), and fracture mechanical (making use of the J-integral concept) properties were studied and discussed. Though pCBp had a higher specific surface weight than CB, the latter proved to be a more active filler with respect to the tensile strength. The opposite tendency was found for the tear strength and fracture mechanics characteristics (J-integral at crack tip opening, tearing modulus, and trouser tear strength). This was traced to an enlargement in the crack tip damage zone supported by the dispersion characteristics of the pCBp. The performance of pCBp was similar to that of CB with respect to some other properties. OC supported the filler networking which positively affected the resistance to crack initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号