首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
An NMR investigation was carried out on random and alternating copolymers of acrylonitrile (AN) with a-methylstyrene (MS) and methacrylonitrile (MAN) with α-methylstyrene and styrene (S). The alternating MS-AN copolymer, prepared by complexation with AlEti1-5Cl1-5, was found to have a predominantly coisotactic configuration which was attributed to the interaction between the CH3 and CN groups. The cotacticity of the alternating copolymer was found to be independent of the temperature of polymerization and the amount of AlEt1-5Cl1-5 used for complexation. The NMR spectra of random MS-AN copolymers of varying compositions indicated a high value (0.85) for the coisotacticity probability parameter (σ). The equimolar random MS-AN copolymer was also found to have essentially alternating sequences which was attributed to their low reactivity ratios. The equimolar alternating MS-MAN copolymer was found to have a random stereochemical configuration in which the coisotactic placement was slightly preferrred over the cosyndiotactic placement. The NMR spectrum of the equimolar free radical initiated MS-MAN copolymer lacked the fine structure observed in the spectrum of the alternating copolymer which was attributed to the presence of other sequences. The equimolar alternating S-MAN copolymer was found to have a high coisotactic configuration similar to that observed in the MS-AN copolymer. The equimolar free radical initiated S-MAN copolymer had a random sequence distribution.  相似文献   

2.
The copolymerization of isoprene, butadiene, and other conjugated dienes with maleic anhydride was readily initiated in polar solvents by conventional free radical catalysts, including peroxides, hydroperoxides, and azobisisobutyronitrile, at high concentrations or at temperatures at which the catalyst had a half-life of 1 hr or less and the total reaction time was 0.5-1 hr. Decreasing the reaction temperature or the rate of catalyst addition resulted in increased yields of Diels-Alder adduct and decreased yields of copolymer. The molecular weight decreased as the temperature increased. Dioxane and tetrahydrofuran peroxides, obtained by the passage of oxygen or UV irradiation in air, also initiated the copolymerization. The soluble diene-maleic anhydride copolymers were equimolar and alternating, had [n] 0.1-6 (cyclohexanone) and contained 75-95% 1,4 structure according to ozonolysis, titration with IC1 and NMR. The IR spectrum of the butadiene–maleic anhydride copolymer indicated 75-95% cis-1,4, 5-20% trans-1,4 and 0-5% 1,2-vinyl unsaturation. The proposed mechanism of polymerization involves a donor-acceptor (diene-dienophile) interaction generating a ground-state charge transfer complex which is readily converted to the cyclic adduct. Under the influence of radicals the ground-state complex is transformed into an excited complex which undergoes polymerization. High concentrations of radicals are necessary to generate polymerizable excited complexes in competition with adduct formation.  相似文献   

3.
Abstract

The copolymerization of styrene (S) with methyl acrylate (MA) and with methyl methacrylate (MMA) in the presence of AlEt3 yields equimolar, alternating copolymers while no polymer is formed in α-methylstyrene (MS)-MA and MS-MMA systems. In the presence of AlEt1.5Cll,5 (EASC), S-MA and S-MMA yield alternating copolymers, S-methyl a-chloroacrylate (MCA), MS-MA and MS-MMA yield a mixture of alternating and cationic polymers, and MS-MCA yields cationic polymer only. In the presence of A1C13, S-MA and MS-MA yield a mixture of alternating and cationic polymers and S-MMA and MS-MMA yield cationic polymer only. The cotacticity distributions of the alternating S-MA and S-MMA copolymers prepared in the presence of AlEt3, EASC, and A1C1, are the same; the coisotactic, co-heterotactic, and cosyndiotactic fractions being approximately in the ratio 1:2:1. The cosyndiotactic fractions of the alter-nating copolymers prepared in the presence of EASC are in the order MS-MMA > MS-MA > S-MCA > S-MMA=S-MA.  相似文献   

4.
Abstract

The copolymerization of the cis or trans isomers of 1,3-pentadiene with maleic anhydride in the presence of a peroxide catalyst yields identical equimolar, alternating copolymers in which the pentadiene units have a cis-1, 4 configuration (IR, NMR). The copolymerization of the cis or trans isomers of 1, 3-pentadiene with acrylonitrile in the presence of ethyl aluminum sesquichloride yields identical equimolar, alternating copolymers in which the pentadiene units have a trans-1,4 configuration (IR, NMR). Although the trans isomer forms cyclic adducts with both maleic anhydride and acrylonitrile, the cis isomer does not undergo the Diels-Alder reaction with these dienophlles. The formation of identical copolymers from cis- and trans-1, 3-pentadiene is attributed to isomerization of the diene-dienophile charge transfer complex in the excited state, resulting in the generation of the same homopolymerizable exciplex from both isomers.  相似文献   

5.
The copolymerization of styrene and methyl methacrylate in the presence of ethylaluminum sesquichloride in toluene yields alternating copoly-mers, independent of initial monomer ratio. The rate of polymerization is not influenced by the presence of an excess of either monomer, the conversion curves following a parallel course at a given total monomer concentration. When the concentration of the AlEt1.5Cl1.5 and the S/MMA ratio are kept constant and the total monomer concentration is increased, the polymerization rate increases and reaches a limiting value at a S/MMA/Al ratio of 2:2:1. A similar result is obtained when the total monomer and the AlEt1.5Cl1.5 concentrations are kept constant and the S/MMA ratio is varied. When the concentration of either monomer and the AlEt1.5Cl1.5 concentration are kept constant and the concentration of the other monomer is varied, the polymerization rate reaches a limiting value at the same mole ratio, irrespective of which monomer is varied. The rate of polymerization is decreased in the presence of a small amount as well as a large amount of benzoquinone. However, the rate is higher than in the absence of the quinone when the Al/benzoquinone ratio is 2:1. The conductivity of a toluene solution of AlEt1.5Cl1.5 increases only slightly upon the addition of methyl methacrylate, a further small increase occurring upon the addition of styrene. The results provide evidence for the participation of a comonomer complex in the polymerization, the optimum composition resulting either from the simultaneous interaction of several equilibria or the alignment of the complexes in the form of a matrix.  相似文献   

6.
A study of the copolymerization of α-pinene and styrene has been carried out at 10°C using anhydrous AlCl3 as the initiator. It is found that styrene forms copolymer with α-pinene at all mono-meric ratios. A copolymer of 2320–3080 molecular weight is obtained. The softening range of the copolymer is 82 to 85°C. The copolymers are of commercial value.  相似文献   

7.
ABSTRACT

To evaluate the existence of the depropagation reaction in the copolymerization of vinyl monomers, the cationic copolymerization of α-methylstyrene with styrene was studied. The copolymer composition exhibited an extensive dependency on the temperature of polymerization and the monomer concentration, this fact not being explained by the Mayo-Lewis equation. Treatment of the copolymerization in terms of the depropagation reaction led to an estimate of the monomer reactivity ratio and the equilibrium constant between the polymer and the monomer of α-methylstyrene. A comparison of the equilibrium constants thus obtained with those reported in the literature indicates that the magnitude of the equilibrium constants depends on the sequence length of α-methylstyrene units. By extrapolation to long sequence length, the equilibrium constants approach the values which are reported for high molecular weight poly(α-methylstyrene).  相似文献   

8.
In this paper, the effects of temperature from 60 °C to 80 °C and the molar ratios in monomer feed on the copolymerization of α-methylstyrene(AMS) and styrene(St) were studied. The resulting copolymers, designated as PAS, were characterized by FTIR, GPC, NMR and TGA. When the reaction temperature was below 75 °C, the molecular weights increased almost linearly as the evolution of the copolymerization. The phenomenon revealed that AMS could mediate the conventional free radical polymerization having some features of a controlled system. As the AMS/St = 50/50(molar) in feed, the overall fraction of the AMS unit incorporated into the copolymer was as high as 42 mol%, the monomer conversion could be more than 90 wt% and the molecular weights could reach as high as 4400. However, since the styrene is more reactive than AMS, the AMS fraction in copolymer increased with the overall monomer conversion. The 13C-NMR revealed the products were random copolymers which had triads, such as-AMS-AMS-AMS-,-St-AMS-AMS-(-AMS-AMS-St-) and-St-AMS-St-. TGA curves demonstrated that the degradation temperature of the resulting copolymers went down from about 356.9 °C(0 mol% AMS) to 250.2 °C(42 mol% AMS). This behavior demonstrated that there exist weak bonds in the AMScontaining sequences which could be used as potential free radical generators.  相似文献   

9.
Abstract

The Schiff base of 2,4‐dihydroxybenzaldehyde with ethylenediamine has been prepared and complexed with two different divalent metals: Cu(II) and Ni(II). The resulting bisphenolic chelates were inserted in new alternating polymeric structures by their polycondensation with 1,3‐bis‐(chloromethyl)‐1,1,3,3‐tetramethyldisiloxane or α, ω‐bis(chloromethyl)oligodimethylsiloxanes having different numbers of siloxane units in the chains. In order for their activation, the chelates were converted in salt forms by previously treating them with a NaOH 0.1 N solution or in situ in the presence of anhydrous K2CO3. DMF was used as a solvent. The structures of the ligand, complexes, and polymers obtained on their basis were confirmed by IR, UV, and 1H NMR. Characterization was undertaken by thermogravimetric analysis (TGA), solubility tests, and viscosity measurements.  相似文献   

10.
The construction of macro-molecular system containing multiple redox centers or photosensitizers is aimportant subject in the design of molecular electronidevices.1,2 For such objectives, systematization of donor-redox center-acceptor triad molecules into largmolecular systems is one of the most feasible approaches, because the exquisite incorporation of thphotosensitizers and suitable electron donors and/oacceptors into a polymeric chain is useful for varioumolecular electronic systems.3-5 Th…  相似文献   

11.
5,15-Di-bithienyl porphyrin (1) and its Cu(Ⅱ), Zn (Ⅱ) complexes (2 and 3)[1] were polymerized according to Scheme 1 by chemical oxidation using FeCl3 as oxidant for making organic conductor, and the linear porphyrin-thiophene copolymers were obtained. The structures of the copolymers were identified by elemental analysis and IR spectra. The conductivity of poly 5,15-di-bithienyl porphyrin (4) doped with FeCl3 was measured to reach over 10-6 S/cm, which was in the range of semiconductor and higher than that of other porphyrin-thiophene copolymers prepared by Shimidzu. The higher conductivity may be due to the better conjugation between the thienyl group and the porphyrin ring. The thienylporphyrins 7 and 8 could not be polymerized under the similar conditions, but could be polymerized by electrochemical oxidation (working electrode: gold-plate electrode; counter electrode: platinum; reference: standard calomel electrode SEC; solvent: 0.1 mol·dm-3 n-Bu4NClO4 in dry MeCN).  相似文献   

12.
The oil-in-water microemulsion containing N-butyl maleimide(NBMI, M1) and styrene(St, M2) was prepared. The complexation properties of NBMI and St in microemulsion were investigated by means of 1H-NMR. With the participation of charge-transfer complex(CTC), four reactivity ratios and the relative reactivity of free monomers and CTC were obtained. The result was compared with that measured by Mayo-Lewis method.  相似文献   

13.
Summary: The reactivity ratios r1 and r2 in copolymerizations of styrene and parasubstituted styrenes, for which r1 = 1/r2, are in contradiction with diffusion control for their propagation reactions. The cross propagation rate constants k12copol in copolymerization of styrene with p-chlorostyrene, p-methylstyrene and p-methoxystyrene have been shown to increase with their nucleophilicity parameter N. This is also not compatible with diffusion controlled cross propagation and propagation, but agrees with similar rate constants of propagation for these monomers. The capping rate constants k12capp of reactions of poly(p-methylstyrene)± and poly(p-methoxystyrene)± with π-nucleophiles also increase with N, but with a much larger selectivity. This shows that k12copol and k12capp are not identical. The k, from 109 to 6 109 L mol−1 s−1, obtained with p-chlorostyrene, styrene and p-methylstyrene by the Diffusion Clock (DC) method are not consistent with those derived from the ionic species concentration (ISC method) for indene, 2,4,6-trimethylstyrene and p-methoxystyrene of the order of 104 – 105 L mol−1 s−1, also measured for living polymerization. These last values are in agreement with those measured previously in nonliving systems, and with an approximate compensation between the reactivity of a monomer and that of the corresponding carbocation.  相似文献   

14.
Copolymerization of styrene and methyl methacrylate with various unsaturated -diketones was studied. The influence exerted by the reaction temperature, structure of -diketone, and its content in the comonomer mixture on the kinetic parameters of copolymerization and molecular weights of the products was examined.  相似文献   

15.
Russian Journal of Applied Chemistry - Commercial samples of butadiene–styrene copolymers were studied by NMR spectroscopy in a magnetic field of 16.4 T (protons Larmor frequency 700 MHz). A...  相似文献   

16.

Many reports exist in the literature about the application of 1H and 13C‐NMR techniques to analyze the copolymer structure and composition and also determination of reactivity ratios. In this work, on‐line 1H‐NMR spectroscopy has been applied to identify reactivity ratios of itaconic acid and acrylonitrile in the solution phase (DMSO as the solvent) and in the presence of AIBN as the radical initiator. All the peaks corresponding to the existing protons were assigned quietly. Therefore, the kinetics of the copolymerization reaction was investigated by studying the variation of integral of two characteristic peaks regarding each monomer. The obtained data were used to find the reactivity ratios of acrylonitrile and itaconic acid by linear least‐squares methods such as Finemann‐Ross, inverted Finemann‐Ross, Mayo‐Lewis, Kelen‐Tudos, extended Kelen‐Tudos and Mao‐Huglin. In addition, a non‐linear least‐square method (Tidwell‐ Mortimer) was used at low conversions. Extended Kelen‐ Tudos and Mao‐Huglin were applied to determine reactivity ratio values at high conversions as well.  相似文献   

17.
The title complex Salen Co(Ⅲ)Cl(Salen = 6,6’-((1E,1’E)-(cyclohexane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-di-tert-butylphenol)) was synthesized and characterized by elemental analysis, IR spectroscopy, 1H NMR and UV-Vis. The complex can be used as catalyst for the propylene oxide(PO)/CO2 copolymerization in different conditions of reaction time, reaction temperature, carbon dioxide pressure and monomer concentration, and the optimum conditions for copolymerization were obtained.  相似文献   

18.
Abstract

Both AB and BA block copolymers of α-methylstyrene (αMeSt) and 2-chloroethyl vinyl ether (CEVE) were synthesized by the sequential living cationic polymerization initiated with the HCl-CEVE adduct (1a)/SnBr4 system in CH2Cl2 at -78°C. αMeSt-CEVE (AB) block copolymers with narrow molecular weight distributions ([Mbar]w/[Mbar]n ~ 1.15) were obtained when αMeSt was polymerized first, followed by addition of CEVE to the resulting αMeSt living polymer solution. The reverse order of monomer addition, from CEVE to αMeSt, also led to a BA-type block copolymer. In the polymerization of a mixture of the two monomers, almost random copolymers were obtained. Living polymerizations of αMeSt were also induced with functional initiating systems, HCl-functionalized vinyl ether adducts (1b-1d)/SnBr4, to give end-function-alized poly(αMeSt)s with a methacrylate, an acetate, or a phthalimide terminal.  相似文献   

19.
Inclusion complexation processesinvolving four cyclodextrins and naproxen have beenstudied for the protonated and unprotonated forms ofthe guest molecule. The association constants havebeen evaluated from changes in the fluorescenceintensity of naproxen following addition of acyclodextrin to an aqueous naproxen solution. 1HNMR NOESY and ROESY spectra have shown that twoorientations of the guest molecule relative to-cyclodextrin are possible.  相似文献   

20.
Solution polymerization of ε-caprolactone (ε-CL) was performed using four different initiators namely: tin(II) octanoate (Sn(Oct)2)/ethanolamine, aluminium Schiff's base complex-HAPENAlOiPr, lithium diisopropyl amide (LDA) and aluminium isopropoxide. The reaction conditions varied with the initiator used. LDA gave rise to the most rapid polymerization with the highest amount of cyclic species as detected by 13C NMR. However, no cyclic species were detected when HAPENAlOiPr was used as initiator. The tin(II) octanoate/ethanolamine system lead to an α,ω-dihydroxy-polycaprolactone (PCL). The copolymerization of ε-CL was then performed with the hard to oligomerize γ-butyrolactone using the four initiators. GPC (Gel Permeation Chromatography) analyses showed the formation of copolymers. The highest incorporation of polybutyrolactone (PBL) in the copolymer was obtained using HAPENAlOiPr as evidenced by 1H NMR. 13C NMR indicated the presence of pseudoperiodic random copolymers with short blocks of PCL whose block length varied with initiator used. The longest and shortest block length were obtained using Sn(Oct)2 and HAPENAlOiPr respectively as calculated from 13C NMR. The reactivity ratios were determined using the Finemann-Ross method at low conversion with HAPENAlOiPr as initiator. The values obtained, rCL = 19.4 and rBL = 0.11, confirmed the presence of long blocks of CL units in the copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号