首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR) blends were prepared by melt mixing. Isothermal crystallization and miscibility for neat iPP and blends of iPP/PcBR were investigated by differential scanning calorimetry. The presence of PcBR remarkably affected isothermal crystalline behaviors of iPP. An addition of PcBR caused shorter crystallization time and a faster overall crystallization rate, meaning a heterogeneous nucleation effect of PcBR upon crystallization of iPP. For the same sample, the crystallization peak was broader and the supercooling decreased as the crystallization temperature increased. The Avrami equation was suitable to describe the primary isothermal crystallization process of iPP and blends. The addition of PcBR led to an increase of values of the Avrami exponent n, which we suggest was because the blends had a stronger trend of instantaneous three-dimensional growth than neat iPP. The equilibrium melting point depression of the blends was observed, indicating that the blends were partly miscible in the melt.  相似文献   

2.
Thermal properties of polypropylene with poly(cis-butadiene) rubber (iPP/PcBR) blends have been measured by differential scanning calorimetry (DSC), and the melting point Tm, crystallization temperature Tc, enthalpy Δ H (melting enthalpies and crystalline enthalpies), and equilibrium melting point T0 m have been measured and calculated. The variation of Tm, Tc, Δ H and T0 m with composition in the blends was discussed, showing that an interaction between phases is present in iPP/PcBR blends. The degree of supercooling characterizing the interaction between two phases in the blends and the crystallizability of the blends which bears a relationship to the composition of the blends was discussed. The kinetics of isothermal crystallization of the crystalline phase in iPP/PcBR blends was studied in terms of the Avrami equation, and the Avrami exponent n and velocity constant K were obtained. The Avrami exponent n is between 3 and 2, meaning that iPP has a thermal nucleation with two dimensional growths. The variation of the Avrami exponent n, velocity constant K, and crystallization rate G bear a relation to the composition of the blends, n increases with increasing content ofPcBR. K also increased with increasing content of PcBR. All of the K for the blends are greater than for pure iPP. The crystallization rate G (t1/2) depends on the compositions in the blends; all G of the blends are greater than for iPP.  相似文献   

3.
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR vol%: 80/20) blends were prepared by melt mixing with various mixing rotation speeds. The effect of mixing technique on microstructure and impact property of blends was studied. Phase structure of the blends was analyzed by scanning electron microscopy (SEM). All of the blends had a heterogeneous morphology. The spherical particles attributed to the PcBR-rich phase were uniformly dispersed in the continuous iPP matrix. With increase of the mixing rotation speed, the dispersed phase particle's diameter distribution became broader and the average diameter of the separated particles increased. The spherulitic morphology of the blends was observed by small angle light scattering (SALS). Higher mixing rotation speed led to a more imperfect spherulitic morphology and smaller spherulites. Crystalline structure of the blends was measured by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). The introduction of 20 vol% PcBR induced the formation of iPPβ crystals. Higher rotation speed led to a decrease in microcrystal dimensions. However, the addition of PcBR and the increase of mixing rotation speed did not affect the interplanar distance. The long period values were the same within experimental error as PcBR was added or the mixing rotation speed quickened. The normalized relative degree of crystallinity of the blends slightly increased under lower rotation speeds (30 and 45 rpm) and decreased under higher rotation speeds. The notched Izod impact strength of the blends was enhanced as a result of the increase of mixing rotation speed.  相似文献   

4.
In this work, isothermal and nonisothermal crystallization kinetics of poly(ethylene oxide) (PEO) and PEO in PEO/fatty acid (lauric and stearic acid) blends, that are used as thermal energy storage materials, was studied using differential scanning calorimetry (DSC) data. The Avrami equation was adopted to describe isothermal crystallization of PEO and nonisothermal crystallization was analyzed using both the modified Avrami approach and Ozawa method. Avrami exponent (n) for PEO crystallization was in the range 1.08–1.32 (10–90% relative crystallinity), despite of spherulites formation, while for PEO in PEO/fatty acid blends n was between 1.61 and 2.13. Hoffman and Lauritzen theory was applied to calculate the activation energy of nucleation (Kg) – the lowest value of Kg was observed for pure PEO, despite of heterogeneous nucleation of fatty acid crystals in PEO/fatty acid blends. For nonisothermal crystallization of PEO in PEO/lauric acid (1:1 w/w) and PEO/stearic acid (1:3 w/w) blends, secondary crystallization occurred and values of the Avrami exponent were 2.8 and 2.0, respectively. The crystallization activation energies of PEO were determined to be ?260 kJ/mol for pure PEO, ?538 kJ/mol for PEO/lauric acid blend, and ?387 kJ/mol for PEO/stearic acid blend for isothermal crystallization and ?135,6 kJ/mol, ?114,5 kJ/mol, and ?92,8 kJ/mol, respectively, for nonisothermal crystallization.  相似文献   

5.
The crystallization kinetics of isotactic polypropylene (iPP) and nucleated iPP with two organic phosphates, sodium salt (NA7) and triglyceride ester (NA8) of 2,2'-methylene-bis(4,6-di-tert-butylphenyl) phosphoric acid, were investigated by means of a differential scanning calorimeter under isothermal and nonisothermal conditions. During isothermal crystallization, a modified Avrami equation was used to describe the crystallization kinetics. Moreover, kinetics parameters, such as the Avrami exponent, n, the crystallization rate constant, k, and the half-time of crystallization, τ1/2, are compared. The results showed that a dramatic decrease of the half-time of crystallization, as well as a significant increase of the overall crystallization rate, were observed in the presence of the organic phosphates. During nonisothermal crystallization, the primary crystallization was analyzed using the Ozawa model, leading to similar Avrami exponents for iPP and iPP/NA7, which means simultaneous nucleation with three-dimensional spherulitic growth. However, for iPP/NA8, the Avrami exponent in nonisothermal crystallization is evidently different from that in isothermal crystallization, which would indicate a different mechanism of crystal growth. Adding the nucleating agent to iPP makes the overall crystallization activation energy increase.  相似文献   

6.
Nonisothermal crystallization nucleation and its kinetics of in‐situ fibrillar and spherical dispersed phases in poly (phenylene sulfide) (PPS)/isotactic polypropylene (iPP) blends are discussed. The PPS/iPP in‐situ microfibrillar reinforced blend (MRB) was obtained via a slit‐die extrusion, hot stretching, and quenching process, while PPS/iPP common blend with spherical PPS particles was prepared by extrusion without hot stretching. Morphological observation indicated that the well‐defined PPS microfibrils were in situ generated. The diameter of most microfibrils was surprisingly larger than or equal to the spherical particles in the common blend (15/85 PPS/iPP by weight). The nonisothermal crystallization kinetics of three samples (microfibrillar, common blends, and neat iPP) were investigated with differential scanning calorimetry (DSC). The PPS microfibrils and spherical particles could both act as heterogeneous nucleating agents during the nonisothermal crystallization, thus increasing the onset and maximum crystallization temperature of iPP, but the effect of PPS spherical particles was more evident. For the same material, crystallization peaks became wider and shifted to lower temperature when the cooling rate increased. Applying the theories proposed by Ozawa and Jeziorny to analyze the crystallization kinetics of neat iPP, and microfibrillar and common PPS/iPP blends, both of them could agree with the experimental results.  相似文献   

7.
Nonisothermal crystallization kinetics of polypropylene (PP) nanocomposite reinforced with 0.5 wt. % single-walled carbon nanotubes (SWNT) was characterized by differential scanning calorimetry at five different cooling and heating rates. The Avrami, Ozawa, and Seo-Kim kinetic models were used to describe the nonisothermal crystallization of the polymer and its nanocomposite. The addition of nano-filler, in general, improved the crystallization rate and increased the peak crystallization temperature of the nanocomposite as compared to PP. The results show that the Avrami and Seo-Kim models are suitable under different cooling rate conditions but that the Ozawa model is inappropriate for the nanocomposite. Equilibrium melting temperatures, derived from the linear Hoffman-Weeks equation, were shown to decrease in the nanocomposite. Additional analysis was performed based on the Thomson-Gibbs, Lauritzen-Hoffman, and Dobreva-Gutzowa theories, which were applied to take into account the lamellar thickness, nucleating agent, and nucleating activity of the nanocomposite in the nonisothermal melt crystallization process.  相似文献   

8.
The nonisothermal crystallization process of polycaprolactone (PCL)/crosslinked carboxylated polyester resin (CPER) blends has been investigated for different blend concentrations by differential scanning calorimetry (DSC). The DSC measurements were carried out under different cooling rates namely: 1, 3, 5, 10, and 20°C/min. Thermally induced crosslinking of CPER in the blends was accomplished using triglycidyl isocyanurate as a crosslinking agent at 200°C for 10 min. The cured PCL/CPER blends were transparent above the melting temperature of PCL and only one glass transition temperature, Tg, located in the temperature range between the two Tgs of the pure polymer components, was observed, indicating that PCL and crosslinked CPER are miscible over the entire range of concentration. The nonisothermal crystallization kinetics was analyzed based on different theoretical approaches, including modified Avrami, Ozawa, and combined Avrami–Ozawa methods. All of the different theoretical approaches successfully described the kinetic behavior of the nonisothermal crystallization process of PCL in the blends. In addition, the spherulitic growth rate was evaluated nonisothermally from the spherulitic morphologies at different temperatures using polarized optical microscope during cooling the molten sample. Only one master curve of temperature dependence of crystal growth rate could be constructed for PCL/CPER blends, regardless of different blend concentrations. Furthermore, the activation energy of nonisothermal crystallization process (ΔEa) was calculated as a function of blend concentration based on the Kissinger equation. The value of ΔEa was found to be concentration dependent, i.e., increasing from 83 kJ/mol for pure PCL to 115 and 119 kJ/mol for 75 and 50 wt% PCL, respectively. This finding suggested that CPER could significantly restrict the dynamics of the PCL chain segments, thereby inhibit the crystallization process and consequently elevate the ΔEa.  相似文献   

9.
The nonisothermal crystallization kinetics of poly(vinylidene fluoride) (PVDF) in PVDF/polymethyl methacrylate (PMMA)/dipropylene glycol dibenzoate (DPGDB) blends, where DPGDB served as a diluent, via solid–liquid (S-L) phase separation during a thermally induced phase separation process was investigated through differential scanning calorimetry (DSC) measurements. It was found that the Ozawa model could only describe the nonisothermal crystallization behavior of PVDF/PMMA/DPGDB system to some extent. The influence of the cooling rate and PMMA/PVDF weight ratio in the PVDF/PMMA/DPGDB system on the crystallization mechanism was also examined based on the Avrami–Jeziorny method and Mo method. Primary crystallization and secondary crystallization were observed in the Avrami–Jeziorny analysis. The analysis by the Avrami–Jeziorny and Mo models indicated that the increase of PMMA/PVDF weight ratio decreased the crystallization rate during the primary crystallization stage. The results showed that the Mo method could well explain the kinetics of the primary PVDF crystallization. The Avrami–Jeziorny method, however, could not well describe the nonisothermal crystallization process of PVDF in the primary crystallization stage. The activation energy, determined by the Kissinger method, was not suitable to reflect the PVDF crystallization process in the PVDF/PMMA/DPGDB system.  相似文献   

10.
The modified Avrami, Mo, and Kissinger models were applied to investigate the nonisothermal melt crystallization process of dibenzylidene sorbitol (DBS)/poly(butylene terephthalate) (PBT) blends by differential scanning colorimetry (DSC) measurements. The modified Avrami model can describe the nonisothermal melt crystallization processes of DBS/PBT blends fairly well. The cooling rates and the blend composition affect the crystallization of the blends according to Mo crystallization kinetics parameters. The Mo model shows that F(T) increases with increasing crystallinity, indicating that the needed cooling rate when it reached a certain crystallinity increased in unit time, the crystallization rate of DBS/PBT blends is faster than the crystallization rate of pure PBT, and the crystallization rate of the DBS/PBT blends with 0.5% DBS is fastest. The Kissinger model showed that the crystallization activation energy of DBS/PBT blends is lower than the activation energy of pure PBT; the crystallization activation energy of the DBS/PBT blends with 0.5% DBS is the lowest.  相似文献   

11.
Differential scanning calorimetry, x-ray diffraction, and polarized optical microscopy were used to investigate the quiescent crystallization and melting behavior of isotactic polypropylene (iPP) nanocomposites based on synthetic organic-soluble Ag nanocrystals (NCs). The effects of Ag loading and crystallization temperature on the crystallization behavior and crystalline structure were studied. The results showed that the synthetic Ag NCs as a novel effective β-crystal nucleating agent for iPP could promote the overall crystallinity, decrease the size of spherulites, and induce the formation of large amounts of β-crystals in the nanocomposites under quiescent crystallization. The relative content of β-crystals significantly increased with increasing Ag loading, and slightly increased with decreasing crystallization temperature. The quiescent crystallization kinetics was analyzed using the Avrami model. The results showed that the iPP nanocomposites with added Ag NCs had higher crystallization rate constant (k) and lower crystallization half-times (t1/2) as well as the Avrami exponent (n) than pure iPP, indicating that the presence of Ag NCs acted as heterogeneous nucleating sites and promoted the crystallization rate of iPP.  相似文献   

12.
PTT/EPDM-g-MA (80/20 w/w) nanocomposites were prepared by melt mixing of poly(trimethylene terephthalate) (PTT), ethylene-propylene-diene copolymer grafted with maleic anhydride (EPDM-g-MA), and organoclay. The blend nanocomposites show typical sea-island morphologies. The nonisothermal crystallization kinetics of pure PTT and 80/20 (w/w) PTT/EPDM-g-MA blends with various amounts of the clay were extensively studied by differential scanning calorimetry (DSC). The Avrami, Ozawa, and Mo methods were used to describe the nonisothermal crystallization process of pure PTT and 80/20 (w/w) PTT/EPDM-g-MA blends with various amounts of the clay. Avrami analysis results show that the crystallization rates of 80/20 (w/w) PTT/EPDM-g-MA blends with the clay were faster than those of pure PTT or PTT/EPDM-g-MA blends without clay, which indicates that the clay particles promote crystallization effectively, in agreement with the Mo analysis results. Ozawa analysis can describe the nonisothermal crystallization of pure PTT very well but was rather inapplicable to the 80/20 (w/w) PTT/EPDM-g-MA blends with various amounts of the clay.  相似文献   

13.
The mechanical properties, morphology, crystallization, and melting behaviors and nonisothermal crystallization kinetics of poly (trimethylene terephthalate)(PTT)/maleinized acrylonitrile-butadiene-styrene (ABS-g-MAH) blends were investigated by an impact tester, polarized optical microscopy, and differential scanning calorimetry (DSC). The results suggested that the ABS-g-MAH component served as both a nucleating agent for increasing the crystallization rate and as a toughening agent for improving the impact strength of PTT. When the ABS-g-MAH content was 5wt.%, the blend had the best toughness and a high crystallization rate. The blends showed different crystallization rates and subsequent melting behaviors due to their different ABS-g-MAH contents. The Ozawa theory and the method developed by Mo and coworkers were used to study the nonisothermal crystallization kinetics of the blends. The kinetic crystallization rate parameters suggested that the proper contents of ABS-g-MAH can highly accelerate the crystallization rate of PTT, but this effect nearly reaches saturation for ABS-g-MAH contents over 5%. The Ozawa exponents calculated from the DSC data suggested that the PTT crystals in the blends have similar growth dimensions as those in neat PTT, although they are smaller and/or imperfect. The effective activation energy calculated by the method developed by Kissinger also indicates that the blends with higher ABS-g-MAH content were easier to crystallize.  相似文献   

14.
Recycled poly(ethylene terephthalate) (r-PET) was blended with poly(ethylene octene) (POE) and glycidyl methacrylate grafted poly(ethylene octene) (mPOE). The nonisothermal crystallization behavior of r-PET, r-PET/POE, and r-PET/mPOE blends was investigated using differential scanning calorimetry (DSC). The crystallization peak temperatures (T p ) of the r-PET/POE and r-PET/mPOE blends were higher than that of r-PET at various cooling rates. Furthermore, the half-time for crystallization (t 1/2 ) decreased in the r-PET/POE and r-PET/mPOE blends, implying the nucleating role of POE and mPOE. The mPOE had lower nucleation activity than POE because the in situ formed copolymer PET-g-POE in the PET/mPOE blend restricted the movement of PET chains. Non-isothermal crystallization kinetics analysis was carried out based on the modified Avrami equation, the Ozawa equation, and the Mo method. It was found that the Mo method provided a better fit for the experimental data for all samples. The effective energy barriers for nonisothermal crystallization of r-PET and its blends were determined by the Kissinger method.  相似文献   

15.
Macro-kinetic models, namely the modified Avrami, Ozawa, Mo, and Kissinger models, were applied to investigate the non-isothermal melt crystallization process of PTT/PBT blends by DSC measurements. It was found that the modified Avrami model can describe the non-isothermal melt crystallization processes of PTT/PBT blends fairly well. When the cooling rates range from 5 to 20°C/min, the Ozawa model could be used to satisfactorily describe the early stage of crystallization. However, the Ozawa model didn't fit the polymer blends in the late stage of crystallization, because it ignored the influence of secondary crystallization. Under the conditions of the non-isothermal melt crystallization, it was found that the cooling rates and the blend composition affect the crystallization for blends according to Kissinger crystallization kinetics parameters. The crystallization kinetics constant Ka increases with increasing cooling rate, indicating the crystallization rates of PTT, PBT, and PTT/PBT blends were improved. The crystallization kinetic activation energy parameters are good agreement with the results from isothermal crystallization processes of the polymer blends. The crystallization activation energy of PTT/PBT blends is higher than the activation energy of PTT and PBT.  相似文献   

16.
The nonisothermal crystallization kinetics of poly (vinylidene fluoride) (PVDF) in PVDF/tributyl citrate (TBC) blends having undergone thermally induced phase separation were investigated through differential scanning calorimetry measurements. Ozawa theory, Mo's method and Kissinger model were used to analyze the kinetics of the nonisothermal crystallization process. The Ozawa theory failed to describe the crystallization behavior of PVDF in the PVDF/TBC blends, whereas the Mo model was able to describe the nonisothermal crystallization process fairly well. The crystallization activation energy was determined by the Kissinger method, and was in the range of 90–165 kJ/mol.  相似文献   

17.
The blends of poly(trimethylene terephthalate) (PTT) with maleic anhydride-grafted poly(ethylene-octene) (POE-g-MA) and organoclay (OMMT) were prepared by melt-blending. The effects of organoclay platelets on the isothermal crystallization behaviors of PTT/POE-g-MA blend were examined using differential scanning calorimetry. The crystallization kinetics of the primary stage under isothermal conditions could be described by the Avrami equation, with values of the Avrami exponent between 2.01 and 2.81 for all samples. The crystallization rate parameter, K, decreased with increase of melt-crystallization temperature for all samples. The activation energies for isothermal crystallization were determined by the Arrhenius equation.  相似文献   

18.
The thermal behaviors of glycidyl methacrylate (GMA)-grafted polypropylene (PP) (PP-g-GMA) with two different grafting degrees, namely, GPP1 and GPP2, were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), and thermogravimetrical analysis (TGA). DSC results suggested that the GMA grafted PP exhibited higher crystallization temperature Tc, higher melting temperature Tm, and higher crystallinity compared with the neat PP. The isothermal crystallization kinetics was analyzed with the Avrami equation and the total crystallization activation energy was calculated. It was concluded that the crystallization processes of PP and the grafted PP were controlled by nucleation and the values of the crystallization activation energy of PP and the grafted PP were almost identical. POM results suggested that the GMA grafted PP exhibited smaller spherulites size compared with the neat PP. WAXD patterns indicated that the neat PP encouraged the formation of γ phase, compared with the grafted PP, during the crystallization process. DMA results showed that melt grafting did not induce a clear effect on the γ-transition and β-transition of the amorphous phase but resulted in a decrease in mobility of the PP chains in the crystals. TGA curves suggested that the melt grafting slightly improved the thermal stability of PP.  相似文献   

19.
Addition of a commercial available multiamide compound (N,N′,N′′-tricyclohexyl-1,3,5- benzenetricarboxylamide, defined here as TMC) into ecofriendly poly(lactic acid) (PLA) can accelerate the crystallization rate of the material remarkably and broaden its applications. In this paper, the nonisothermal crystallization behavior of biodegradable PLA nucleated by 0.3 wt.% of TMC was investigated by differential scanning calorimetry (DSC). The modified Avrami, Tobin, Ozawa, and Mo models were applied to describe the kinetics of the crystallization process. Various parameters of nonisothermal crystallization, such as the crystallization half-time and crystallization rate constant, reflected that TMC significantly accelerated the crystallization process. The activation energy values of the neat PLA and PLA/TMC blend, determined by the Kissinger method, increased with the addition of TMC. The study should be helpful for understanding the relationship between processing and properties of this material.  相似文献   

20.
Poly(?-caprolactone) (PCL)/zinc oxide (ZnO) nanocomposites (PCLZs) with high ZnO contents were prepared by using ZnO to initiate ring-opening polymerization of ?-caprolactone (?-CL). The Ozawa and Mo equations were chosen to analyze the nonisothermal crystallization kinetics of PCLZs. The results showed that the Ozawa equation was not successful while the Mo equation was successful in describing the nonisothermal crystallization kinetics of PCLZs. When the ZnO content in PCLZs was high, the effect of ZnO content on crystallization behaviors was small and the crystallization rates of PCLZs only increased slightly with the increase of ZnO content. Crystallization activation energies (Ec s) of PCLZs were estimated by Kissinger's method. The results showed that the Ec s of PCLZs with three different ZnO contents were nearly identical within the tolerance, which further demonstrated that the effect of ZnO content on crystallization behaviors was small when the ZnO content in PCLZs was high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号