首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Conditions for the convenient synthesis of linear poly(β-pinenes) that carry one or two tert-chloro end groups (~Clt) and three-arm star poly(β-pinenes) that carry three termini have been worked out. Specifically, the polymer with one ~Clt end group was prepared by the H2O/BCl3 system, whereas those with two and three ~Clt termini were prepared by the use of p-dicumyl chloride and sym-tricumyl chloride/BCl3 inifer combinations. The ~Clt-terminated polymers were dehydro-chlorinated to yield the corresponding olefins. The molecular weights of the products were low enough to permit infrared (IR) and quantitative 1H-NMR investigations. Poly(β-pinene-b-tetrahydrofuran) diblock copolymers have been synthesized by inducing the polymerization of tetrahydrofuran (THF) by the Pβ? Clt/AgCF3SO3 initiating system.  相似文献   

2.
"Living"/controlled radical polymerization of ethyl methacrylate (EMA) was carried out with a 2,2'-azobisisobutyronitrile (AIBN)/ferric chloride (FeCl_3)/triphenylphosphine (PPh_3) initiation system at 85℃. Thc numberaverage molecular weight (M_n) increases linearly with monomer conversion and the rate of polymerization is first order withrespect to monomer concentration. The M_w of PEMA ranges from 3900 to 17600 and the polydispersity indices are quitenarrow (1.09~1.22). The conversion can reach up to~100% and M_w of the polymers obtained is close to that designed. Thepolymerization mechanism belongs to the reverse atom transfer radical polymerization (ATRP). The polymer was end-functionalized by chlorine atom, which acts as a macroinitiator to proceed extension polymerization in the presence ofCuBr/bipy catalyst system via an ATRP process. The presence of ω-chlorine in the PEMA obtained was identified by ~1H-NMR spectrum.  相似文献   

3.
In this work catalytic ring-opening polymerization of cyclic esters in THF in the presence of benzyl alcohol is described. The polymerization is catalyzed by 1,3-bis(4-methoxyphenyl)imidazolium carbene, N-heterocyclic carbene (NHC). The ability of two different monomers, ?-caprolactone and L-lactide, to enter into the polymerization via ring-opening polymerization with NHCs as catalysts was evaluated. The plot of ln([M]0/[M]t) versus reaction time yielded a straight line indicating that the kinetics of polymerization of ?-caprolactone and L-lactide was first-order in monomer concentration. Moreover, a direct relation between the rate of ring-opening polymerization of ?-caprolactone and the catalyst concentration suggested a first-order dependence of the rate of polymerization on the catalyst concentration.  相似文献   

4.
Lithium chloride was found to be an effective and biocompatible catalyst for the ring-opening polymerization of lactide in the presence of hydroxyl-containing compounds. Ethylene glycol (EG) and methyl α-D -glucopyranoside (MGlc) were used as multifunctional initiators. The polymerization was carried out at 128°C in bulk with 1% (w/w) of LiCl. Polylactide (PLA) of different molecular weights was obtained with varied molar ratios of monomer/initiator ([M]0/[I]0). The LiCl-catalyzed ring-opening polymerization was applied to the synthesis of a number of amphiphilic PLA copolymers when poly(ethylene glycol) (PEG), hydroxyethyl cellulose (HEC), and hydroxypropyl cellulose (HPC) were used as macroinitiators. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3486–3491, 1999  相似文献   

5.
Polyoxytetramethyleneglycol (PTMG) can be directly prepared from tetrahydrofuran (THF) and water in the presence of heteropolyacids (HPA), without the hydrolysis step. The reaction is carried out by mixing two liquid phases: the THF phase and a heteropolyacid catalyst phase. In this reaction the molar ratio of water to a heteropolyacid (H2O/HPA) in the catalyst phase plays an important role in the THF polymerization activity and the molecular weight of PTMG. IR spectrometric studies revealed that THF is coordinated to a heteropolyanion through either a water molecule or a proton in the catalyst phase. The latter type of coordination bings about the activation of THF capable of initiating the ring-opening polymerization even in the presence of water at a lower acid strength. The PTMG prepared by this method has a narrow molecular weight distribution (M?w/M?n = 1.5 or less) and a number average molecular weight of 500–2000 which are requisite for the production of polyurethane elastomers. A new polymerization mechanism named “Phase Transfer Polymerization” is proposed for elucidating a narrow molecular weight distribution.  相似文献   

6.
The multi-arm star polymer (ESOPLA) was obtained by ring-opening polymerization of dl-lactide using multifunctional epoxidized soybean oil (ESO) as an initiator in the presence of a stannous actuate (SnOct2) catalyst. Gel permeation chromatography with multi-angle laser light scattering (GPC-MALLS), FTIR, 1H NMR, thermal analysis and in vitro degradation were used to qualitatively characterize the synthesized polymers. The results revealed that ESO plays an important role in increasing the molecular weight, polymerization rate and monomer conversion rate. Degradation analysis demonstrated that the decrease in molecular weight and the weight loss ratio of the star-shaped ESOPLA were lower than that of linear poly(dl-lactide) (PDLLA). The surface topography of pre- and post-degradation materials was characterized by scanning electron microscopy (SEM). These SEM images showed that the linear PDLLA films underwent water erosion more readily than the star-shaped polymer films.  相似文献   

7.
A new monomer, 4-methyl-1,3-dioxene-4 was synthesized from allyl chloride and paraformaldehyde. The monomer was polymerized at room temperature or ?78°C. by boron trifluoride etherate catalyst, and the structure of the obtained polymer was determined by infrared, nuclear magnetic resonance spectra, and chemical analysis. It was ascertained that the polymerization process proceeded through a ring-opening mechanism at the dioxane ring. In the presence of tetrahydrofuran, the polymerization of 4-methyl-1–1,3-dioxene-4 led to copolymer. The mechanism of the copolymerization is described in detail.  相似文献   

8.
It was found that structurally isomeric polymers were formed by the ring-opening polymerization of β-(2-acetoxy ethyl)-β-propiolactone with (EtAlO)n and Et(ZnO)2ZnEt catalysts; that is, the Al catalyst catalyzed normal polymerization which led to poly-β-ester and the Zn catalyst formed isomerized poly-β-ester as the main product. The polymer structure was determined by nuclear magnetic resonance (NMR), T1-value, thermal decomposition product, and (Tg). The NMR studies for the monomer–catalyst systems indicated that the Al catalyst interacted predominately with the lactone group, whereas the Zn catalyst interacted with the side-chain ester group. These site-selective interactions could be related to the difference in the stereoregulation by the two catalysts during the poly(β-ester)-forming polymerization process.  相似文献   

9.
Abstract

The binary system of tetramethyl tetrazene (TMT) and Co(II) chloride was used as initiator of acrylonitrile (AN) in dimethylformamide. The initial rate of polymerization (Rp) was found to be expressed by Rp = k[TMT]0.62[Co(II) chloride]0.57 [AN]2.00

The polymerization was confirmed to proceed via a radical mechanism. The over-all activation energy for the polymerization was estimated as 15.1 kcal/mole. On the basis of these results and the product analysis of the reaction between the catalyst components in the absence of monomer, the initiation mechanism of the polymerization is discussed.  相似文献   

10.
陈栋梁 《高分子科学》2016,34(5):594-605
In order to exploit the biological functions of materials, a series of new random terpolymers were synthesized by the ring-opening polymerization of p-dioxanone, trimethylene carbonate, and L-phenylalanine N-carboxyanhydride (L-Phe- NCA) in the presence of stannous octoate. The terpolymers were characterized by 1H-NMR, 13C-NMR, FTIR, and gel permeation chromatography. The effects of the reactant ratio, catalyst dosage, reaction temperature and time on the copolymerization were investigated, and were found to regulate the composition of the terpolymer. Increases in the reaction temperature, polymerization time, L-Phe-NCA monomer amount, and catalyst content generated a product with a slightly decreased molecular weight. The crystallinity of the terpolymer was investigated by differential scanning calorimetry and polarized optical microscopy. A reasonable mechanism for the polymerization was proposed based on the obtained results.  相似文献   

11.
The polymerization of vinyl chloride (VC) with half‐titanocene /methylaluminoxane (MAO) catalysts is investigated. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst (Cp* = η5‐pentamethylcyclopentadienyl) afforded high‐molecular‐weight poly(vinyl chloride) (PVC) in good yields, although the polymerization proceeded at a slow rate. With the Cp*TiCl3/MAO catalyst, the polymer was also obtained, but the polymer yield was lower than that with the Cp*Ti(OCH3)3/MAO catalyst. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst was influenced by the MAO/Ti mole ratio and reaction temperature, and the optimum was observed at the MAO/Ti mole ratio of about 10. The optimum reaction temperature of VC with the Cp*Ti(OCH3)3/MAO catalyst was around 20 °C. The stereoregularity of PVC obtained with the Cp*Ti(OCH3)3/MAO catalyst was different from that obtained with azobisisobutyronitrile, but highly stereoregular PVC could not be synthesized. From the elemental analyses, the 1H and 13C NMR spectra of the polymers, and the analysis of the reduction product from PVC to polyethylene, the polymer obtained with Cp*Ti(OCH3)3/MAO catalyst consisted of only regular head‐to‐tail units without any anomalous structure, whereas the Cp*TiCl3/MAO catalyst gave the PVC‐bearing anomalous units. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst did not inhibit even in the presence of radical inhibitors such as 2,2,6,6,‐tetrametylpiperidine‐1‐oxyl, indicating that the polymerization of VC did not proceed via a radical mechanism. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 248–256, 2003  相似文献   

12.
An unsymmetrical N-heterocyclic carbene, namely 1-isopropyl-3-benzylimidazol-2-ylidene, is a highly active catalyst for ring-opening polymerization of ?-caprolactone (CL) to give polycaprolactone (PCL) with number average molecular weight (Mn) as high as 2.66 × 104 at 0°C in 100 min in tetrahydrofuran (THF). The effects of monomer/initiator molar ratio ([M]/[I]), catalyst/initiator molar ratio ([C]/[I]), monomer concentration, as well as polymerization temperature and time have been investigated. The kinetic studies of CL polymerization have indicated that the polymerization rate is first-order with respect to both monomer and catalyst concentrations. The apparent activation energy amounts to 56.04 kJ/mol. The proposed mechanism is a monomer-activated process.  相似文献   

13.
2-Mercaptobenzothiazolyl methacrylate (MBTM) was synthesized by the reaction of 2-mercaptobenzothiazole and methacrylyl chloride in tetrahydrofuran at -18°C. MBTM was found to polymerize in the presence of 2,2′-azobisisobutyronitrile (AIBN), n-BuLi, and UV light. From the kinetic studies of radical polymerization of MBTM with AIBN in benzene at 60°C, the overall activation energy was determined to be 18.9 kcal/mole, and the rate of polymerization (R) was expressed as Rp = k[AIBN]0.5 [MBTM], where k is the overall polymerization rate constant. From these results this polymerization was confirmed to proceed via an ordinary radical mechanism. This monomer (M2) was also copolymerized radically with styrene (M1) at 60°C, and the resulting copolymerization parameters were determined as r1 = 0.042, r2 = 0.20, Q2 = 4.09, and e2 = 1.39. The thermal stability and the photodegradation behavior of the polymers were examined, and they were compared with those of the related polymers.  相似文献   

14.
<正> 顺丁橡胶与丁苯橡胶在性能上的差别,在于其分子主链上缺少象苯基那样的侧基。而中乙烯基聚丁二烯的分子主链上有相当数量的乙烯基侧基,它弥补丁顺丁胶的不足之处。故日益受到人们的注意。目前,已工业化的中乙烯基聚丁二烯所用的催化剂为烷基锂体系,其聚合物除了1,2-结构外,其余部分反-1,4结构占多数。我们在前文曾经报  相似文献   

15.
This investigation reports the synthesis of poly(methyl methacrylate) via activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and studies the effect of solvents and temperature on its polymerization kinetics. ARGET ATRP of methyl methacrylate (MMA) was carried out in different solvents and at different temperatures using CuBr2 as catalyst in combination with N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a ligand. Methyl 2‐chloro propionate was used as ATRP initiator and ascorbic acid was used as a reducing agent in the ARGET ATRP of MMA. The conversion was measured gravimetrically. The semilogarithmic plot of monomer conversion versus time was found to be linear, indicating that the polymerization follows first‐order kinetics. The linear polymerization kinetic plot also indicates the controlled nature of the polymerization. N,N‐Dimethylformamide (DMF), tetrahydrofuran (THF), toluene, and methyl ethyl ketone were used as solvents to study the effect on the polymerization kinetics. The effect of temperature on the kinetics of the polymerization was also studied at various temperatures. It has been observed that polymerization followed first‐order kinetics in every case. The rate of polymerization was found to be highest (kapp = 6.94 × 10−3 min−1) at a fixed temperature when DMF was used as solvent. Activation energies for ARGET ATRP of MMA were also calculated using the Arrhenius equation.  相似文献   

16.
Facile ring-opening polymerization of cyclic aryl ether oligomers containing the 1,2-dibenzoylbenzene moiety to form high molecular weight linear polymers in the presence of a nucleophilic initiator is described. The polymerization can be initiated in the melt in the presence of a nucleophilic initiator such as potassium carbonate, cesium fluoride, and alkali phenoxides. Various alkali phenoxides were investigated as potential nucleophilic initiators. The polymerization reaction rate in the melt increases in the order of K+ > Na+ > Cs+, and in the order of OPhPhO > PhO > PhOPhO > PhPhO. However, the polymerization in an aprotic dipolar solvent is faster in the presence of cesium phenoxide than in the presence of potassium phenoxide. Polymerization of the cyclic oligomers in solution demonstrates that the ring-opening polymerization proceeds via a chain-growth mechanism and involves a transetherification reaction between linear and cyclic aryl ether oligomers. The ring-chain equilibrium is much more favorable towards linear polymers. Since little or no ring strain exists in the cyclic system, the transetherification reactions are indiscriminate with regards to cyclic or linear chains and the interchain equilibration is also a facile process during polymerization. This intermolecular transetherification has been demonstrated by using low molecular weight aryl ethers to control the molecular weight of the polymer formed via ring-opening polymerization. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Living ring-opening polymerization of the cyclic carbonate 1,3-dioxepan-2-one was achieved by using the cationic zirconocene complex [Cp2ZrMe]+[B(C6F5)4] as catalyst at room temperature. A linear relation between conversion and molecular weight of the obtained polymer was observed. Furthermore, block copolymerization of the cyclic carbonate and ε-caprolactone was successfully performed.  相似文献   

18.
A series of MoO3/ZrO2 catalysts were prepared by impregnation method, and characterized by X-ray diffraction (XRD), specific surface area (BET) and temperature-programmed desorption of NH3 (NH3-TPD). The polydimethylsiloxane (PDMS) was prepared by ring-opening polymerization from D4 and MM with MoO3/ZrO2 catalysts. The effects of MoO3/ZrO2 catalysts preparation conditions on PDMS molecular weight and reaction conversion rate were discussed. Moreover, the effects of reaction conditions on the ring-opening polymerization were also studied. During the preparation of PDMS, the molecular weight of the product can be controlled by adjusting the mass ratio of D4:MM. The MoO3/ZrO2 catalyst was compared with other catalysts during the ring-opening process, and the repeated times of MoO3/ZrO2 catalysts were also studied. The results showed that MoO3/ZrO2 catalyst had more excellent catalytic performance, for ring-opening process, and when the repeated times was more than 5, the catalytic activity decreased significantly. In addition, the kinetics of D4 ring-opening polymerization with the MoO3/ZrO2 catalyst was investigated.  相似文献   

19.
The polymerization of 1-methoxy-1-ethynylcyclohexane (MEC) was carried out by various transition metal catalysts. The catalysts MoCl5, MoCl4, and WCl6 gave a relatively low yield of polymer (≤ 16%). The catalytic activity of Mo-based chloride catalyst was greater than that of W-based chloride catalyst. However, catalyst tungsten carbene complex (I) gave a larger molar mass and higher yield in the presence of a Lewis acid such as AlCl3 than in the absence of a Lewis acid. The activity of the tungsten carbene complex was obviously affected by Lewis acidity. The catalyst PdCl2 was a very effective catalyst for the present polymerization and gave polymers in a high yield. The structure of the resulting poly(MEC) was identified by various instrumental methods as a conjugated polyene structure having an α-methoxycyclohexyl substituent. The poly(MEC)s were mostly light-brown powders and completely soluble in various organic solvents such as tetrahydrofuran (THF), chloroform (CHCl3), ethylacetate, n-butylacetate, dimethylformamide, benzene, xylene, dimethylacetamide, 1,4-dioxane, pyridine, and 1-methyl-2-pyrrolidinone. Thermogravimetric analysis showed that the polymer started to lose mass at 125°C and that maximum decomposition occurred at 418°C. The x-ray diffraction diagram shows that poly(MEC) has an amorphous structure. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
Poly(sulfone‐arylate) was synthesized in a reaction between dihydroxy polysulfone prepolymers and either diphenyl terephthalate or terephthaloyl chloride. The dihydroxy polysulfone prepolymers had molecular weights of 2000 and 4000 g/mol. The polymerization with diphenyl terephthalate was carried out at high temperature (280 °C) in the presence of a catalyst, whereas the polymerization with terephthalic chloride was conducted in solution at low temperature in the presence of an acid acceptor. High‐molecular weight copolymers (ηinh ~ 0.60 dL/g) could be obtained through both methods. The copolymers were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, DMA, and differential scanning calorimetry measurements and were found to exhibit high Tg values. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3904–3913, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号