首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and mechanism of the retarding action of phenol on the V5+–thiourea initiated polymerization of methyl acrylate (MA) have been studied within the temperature range of 30–50°C. The effects of retarder (phenol), metal ion (V5+), monomer (MA), sulfuric acid, some organic solvents and inorganic salts on the percentage and rate of polymerization have been studied. The remarkable observation of the present study is the positive intercept obtained from the plot of [M]/Rp vs. 1/[M]. This type of observation is significantly different from previous studies on retarded polymerization. The values of composite rate constants k0kt/kikpkK have been calculated from plots of [M]/Rp vs. 1/[M]. On the basis of experimental findings a reaction mechanism has been suggested, and a suitable rate expression has been proposed and explained.  相似文献   

2.
The electrooxidation of phenol has been studied on C-felt electrode by using cyclic voltammetry (CV) technique. The kinetic parameters electrooxidation reaction such as oxidation potential at zero scan rate (E 0), temperature coefficient (dE/dt), reaction order (n), activation energy (E a), calculated from variation of oxidation peak potentials and current with potential scan rate, phenol concentration and related temperature. Phenol reaction path way (either degradation or polymerization and forming high molecular weight species) and potential residence of phenol degradation are determined by applying different electrolysis voltage values (0.630, 1, 2 and 3 V) in acidic phenol solution (0.0125 M Phenol + 0.5 M H2SO4). In addition, decrease in the phenol concentration is monitored in this solution during 6 hours with 1 hour time period and from this data linear relation ship was found to between applied potential and phenol removal efficiency. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 3, pp. 281–288. The article is published in the original.  相似文献   

3.
The aqueous polymerization of acrylamide initiated by the potassium persulfate/lactic acid system catalyzed by Ag+ ions has been studied iodometrically over the temperature range from 35 to 50 ± 0.2°C. The rate of polymerization is governed by the expression Rp ∞ [M]0.8[K2S2O8]1.0[Ag]1.0 The deviation from normal kinetics has been studied. A tentative mechanism of initiation is suggested. The overall energy of activation is 5.52 kcal/mol.  相似文献   

4.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   

5.
The polymerization of acrylonitrile initiated by the redox system K2S2O8-citric acid catalyzed by Ag+ ion has been studied over the temperature range 35–50°C. The rate of polymerization is proportional to the square root of peroxydisulfate concentration. The initial rate increases with increasing citric acid concentration, but at relatively higher concentration of citric acid the rate decreases. The rate of polymerization also increases with increasing monomer concentration and temperature. The overall activation energy calculated from the Arrhenius plot was found to be 4.6 kcal/mole. On the basis of the observation, a suitable kinetic scheme has been proposed for the reaction.  相似文献   

6.
Phenol has been used as an additive to enhance the rate of SET‐LRP in toluene at ambient temperature. A direct relationship between reaction time and amount of phenol added has been found with the optimum amount being ~ 20 equiv. of phenol with respect to initiator. Polymerization of methyl acrylate (MA) has been carried out in the presence of varying amounts of phenol and the rate of polymerization depends on the concentration of phenol relative to initiator. With a 20‐fold excess 93% conversion is observed after 218 min (PDI = 1.06, Mn = 11,500 g mol?1) when compared with 80% conversion with a 5‐fold excess (PDI = 1.21, Mn = 5310 g mol?1). When nonsterically hindered phenols are employed in a 20 molar excess with respect to the initiator the polymerizations have good linear first‐order kinetics and give polymers with PDI between 1.06 and 1.16. When a highly hindered phenol is employed there is a significant induction period prior to polymerization taking place which is similar to when using no phenol. Less hindered phenols accelerated the polymerization when compared with polymerizations with no added phenol. Increasing steric hindrance at the ? OH prevents this coordination which indicates that the role of phenol is different with either copper(0) or copper(I). Aliphatic and aromatic esters and amides were used successfully as initiators giving polymers with Mn close to that predicted at ~ 10,000 g mol?1 and PDI typically less than 1.10. An induction period is observed in most cases which can be removed by a pre‐equilibrium step before the addition of monomer. This results in excellent first‐order kinetics being observed in the polymerization of MA in toluene solution (50 vol %). Here Cu(0) (powder)/Me6‐TREN with 20 equiv. of phenol and all of the reactants, except the monomer, were added to the reaction flask and stirred for 45 min at 25 °C. The structure of the polymer is shown by MALDI TOF MS to contain bromide chain ends derived from the alkyl bromide initiator. The retention of this end group is consistent with living radical polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7376–7385, 2008  相似文献   

7.
The polymerization of tetrafluoroethylene initiated by the inorganic polymer fluorocarbon material CF0.95 prepared by the high-temperature fluorination of petroleum coke has been studied. The kinetics of the process has been examined, and the dependences of the rate of polymerization and the yield of polymer on monomer pressure and temperature have been considered. The free-radical mechanism of the process is established by ESR. The kinetic features of initiation and polymerization leading to an exponential growth in rate in the initial non-steady-state portion of kinetic curves are discussed.  相似文献   

8.
Polymerization of isoprene in presence of a heterogeneous Ziegler-type catalyst system, Cr(AcAc)3–AlEt3, has been studied in benzene medium. The rate of polymerization is first-order with respect to catalyst as well as monomer concentration. The rate studies, activation energy, and polymer microstructures are reported in order to follow the probable mechanism of polymerization.  相似文献   

9.
<正> 用过硫酸钾(以下用KPS表示)或三价锰盐单独作为引发剂,或者高价锰盐和过硫酸钾分别与另一还原剂组成氧化-还原引发体系,以引发单体丙烯酰胺(以下用AM表示)聚合,已有许多报道。为了弄清用KPS引发AM聚合时二价锰盐的影响,本文用膨胀计法研究了二价锰盐存在下,KPS引发AM聚合的动力学(用膨胀计毛细管内液柱  相似文献   

10.
The polymerization of methyl methacrylate with the VOCL3–ALEt2Br catalyst system in n-hexane has been studied. The first-order dependence of rate of polymerization on catalyst and monomer concentrations, activation energy of 6.67 kcal/mole, and NMR spectra of polymer lend support to a coordinate anionic mechanism of polymerization. It has been shown that the vanadium in V+2 oxidation state is less active than V+3 oxidation state of active complex.  相似文献   

11.
The concentration dependence of the specific conductivity of the complexes of aluminum trichloride with dibutyl ether, anisole, phenol, and diphenyl ether at equimolar ratios of the two compounds has been measured. Conductivity measurements have been carried out in ethyl chloride at ?78.5°C. Except for dibutyl ether, all the complexes studied are associated over the whole concentration range and their degree of dissociation and molar conductivity are independent of the concentration. In the case of the BuOBu·AlCl3 complex these quantities begin to be independent of the concentration only at concentrations higher than 20 mmoles/l. The degree of polymerization or the molecular weight of polyisobutylene formed by the polymerization in the presence of given complexes is inversely proportional to the concentration of the anions present. This is especially evident from the fact that the relation between x and 1/M? is also linear in the case of the BuOBu·AlCl3 complex, whose degree of dissociation and therefore molar conductivity varies distinctly with the concentration of the complex. The comparison of the chain-breaking efficiency of the anions derived from phenol and diphenyl ether with those derived from phenetole and anisole shows that the mixed aryl alkyl ethers split after reacting with aluminum trichloride under these conditions, so that the phenyl group becomes a part of the cation and the alkyl group a part of the anion. On the basis of the different behaviors of the ions and the dipoles, the differences in the dependence of the degree of polymerization on the dielectric constant of the medium in the cationic polymerization have been explained.  相似文献   

12.
The aqueous polymerization of methacrylamide initiated by the ammonium persulfate/thiolactic acid redox system has been studied at 35 ± 0.2°C. The rate of polymerization is governed by the expression, Rp + Kp [MAA] 1.33 [TLA]0.22 [ammonium persulfate]0.6. The deviations from normal kinetics are discussed. A tentative mechanism of initiation is given. The temperature dependence of the rate of polymerization has been studied over the range 30–55°C. The overall activation energy of polymerization is 10.4 kcal/mole.  相似文献   

13.
The polymerization of Pu(IV) in aqueous nitric acid solutions has been studied spectrophotometrically both to determine the effects of large UO2(NO3)2 concentrations on the polymerization rates and, more generally, to review the influence of other major parameters on the polymer reaction. Typically, experiments have been performed at 50°C and at 0.05M Pu in aqueous solutions of HNO3 at concentrations ranging from 0.07 to 0.4M. An induction period usually precedes the polymer growth stage, during which time it is believed that primary hydrolysis products form and begin to aggregate. Uranyl nitrate retards the polymerization reaction by approximately 35% despite the counteracting influence of the nitrate ions associated with this solute. The rate of polymer formation at 50°C has been shown to be third order in Pu(IV) concentration.  相似文献   

14.
The kinetics of the mechanism of the polymerization of methyl methacrylate initiated by the glycerol/Mn(III) acetate redox system has been investigated in aqueous sulfuric acid medium in the temperature range of 40 to 50 °C. The effects of glycerol, methyl methacrylate, metal ion, acetic acid, and sulfuric acid on the rates of polymerization have been studied. One striking observation is that the increase in monomer concentration steadily decreases the rate of polymerization, contrary to what was observed in the case of acrylonitrile. On the basis of these observations, an appropriate kinetic scheme and rate expression have been developed.  相似文献   

15.
The kinetics of the K2S2O8-initiated inverse emulsion polymerization of aqueous sodium acrylate solutions in kerosene with Span 80 as the emulsifier has been studied. The conversion-time curves are S-shaped. The following expressions have been obtained for the maximum rate of polymerization and the molecular weight of the polymers under the experimental conditions investigated: Rmax ∞ [K2S2O8]0.78[sodium acrylate]1.5[Span 80]0.1, (OVERLINE)M(/OVERLINE)u ∞ [K2S2O8]−0.37[sodium acrylate]2.9[Span 80]−0.2. The activation energy for the maximum rate of polymerization is 94.8 kJ mol−1. The results suggest a monomer–droplet–nucleation mechanism for the system studied. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The kinetics of ruthenium(III) catalyzed polymerization of vinyl monomers (M) (methyl‐, ethyl‐, and butylacrylates) by charge‐transfer mechanism with aminoalcohols (AA) (namely, ethanol‐, diethanol‐, and triethanol amines) and carbontetrachloride in dimethylsulfoxide medium have been studied. The rate of polymerization depends on the [CCl4]/[AA] ratio and may be represented as and The rate of polymerization of monomers with each aminoalcohol was found to be in the order Rp (methyl‐)> Rp (ethyl‐)> Rp (butylacrylate) while that of each monomer with different aminoalcohols was found to be in the order of Rp tertiary > Rp secondary > Rp primary aminoalcohol. The suitable mechanism for the polymerization process consistent with kinetic data has been proposed. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 585–592, 2006  相似文献   

17.
Chlorine gas has been shown by previous investigators to initiate the polymerization of solid N-vinylcarbazole at room temperature, giving a maximum yield of 66% polymer after 18 hr. This initiation of polymerization of N-vinylcarbazole without the application of heat, by a gas, is the only solid-state initiation other than those that are radiation-induced known to us. This study was undertaken in order to determine both the scope and the mechanism of the room-temperature solid-state initiation of vinyl polymerization of N-vinylcarbazole by gases. The gases (HCl, Cl2, and N2O4) were absorbed by solid N-vinylcarbazole, giving very rapid exothermic polymerization: HCl, 37% polymer yield, M?n 2500; Cl2, 50% polymer yield, M?n 4703; N2O4, 91% polymer yield, M?n 7073. The gases NOCl, BF3, and HBr were not absorbed by N-vinylcarbazole and did not initiate polymerization. The N2O4-initiated polymerization, which gave a high yield of polymer, was complete within 5 min. after introduction of gas. This polymerization method and the resulting polymer compared favorably with conventional peroxide-initiated melt polymerization and the polymer obtained thereform. The mechanism of gas-initiated polymerization, which was studied with introduction of inhibitors, appears to be classically cationic in nature.  相似文献   

18.
The electrochemical and chemical polymerization of acrylamide (AA) has been studied. The electrolysis of the monomer in N,N-dimethylformamide (DMF) containing (C4H9)4NClO4 as the supporting electrolyte leads to polymer formation in both anode and cathode compartments. The cathodic polymer dissolves in the reaction mixture and the anodic polymer precipitates during the course of polymerization. A plausible mechanism for the anodic and cathodic initiation reaction has been given. The chemical polymerization of acrylamide that has been initiated by HClO4 is analogous to its anodic polymerization. The polymer yield increases with an increase in concentration of the monomer and HClO4. Raising the reaction temperature also enhances the polymerization rate. The overall apparent activation energy of the polymerization was determined to be ca. 19 kcal/mole. The copolymerization of acrylamide was carried out with methyl methacrylate (MMA) in a solution of HClO4 in DMF. The reactivity ratios are r1 (AA) = 0.25 and r2 = 2.50. The polymerization with HClO4 appears to be by a free radical mechanism. When the polymerization of acrylamide is carried out with HClO4 in H2O, a crosslinked water-insoluble gel formation takes place.  相似文献   

19.
刘慷慨  高保娇 《化学通报》2007,70(5):366-370
采用溴酸钾-溴化钾法研究了阳离子型表面活性单体(2-丙烯酰胺基)乙基十四烷基二甲基溴化铵(AMC14AB)在水溶液中的聚合动力学,分别考察了引发剂浓度与单体浓度对聚合速率的影响,确定了聚合速率方程,分析了聚合机理,考察了温度对聚合反应的影响,测定了聚合表观活化能。研究结果表明,由于AMC14AB在水溶液中的胶束化行为,使其具有较快的聚合速率,于60℃下聚合,40min内转化率即可达到80%以上;AMC14AB的聚合速率方程为Rp=k[M]0.92[I]0.48,说明链终止为双基终止方式,引发过程与单体无关;聚合表观活化能为80.72kJ/mol。  相似文献   

20.
Nickel(II)-aryl complexes [(L2)Ni(Ar)Br] bearing either chiral phosphine ligands (L2 = RR- or SS-DIPAMP, Ar = ortho-anisyl), or a chiral aryl-group have been prepared, and their structural optical an chiroptical properties have been characterized. Enantiomeric pairs of both catalysts have been used for the asymmetric polymerization of different isocyanides ( M1 , M2 , M3 ), to give well defined polyisocyanides ( P1 , P2 , P3 ). Their polymerization behavior has been studied, which confirmed chain-growth polymerization in all cases. The asymmetric induction has been verified by circular dichroism spectroscopy on enantiomeric pairs of all three polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号