首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radical polymerization of glycidyl methacrylate (GMA) was conducted under a carbon dioxide atmosphere (1 atm) in the presence of catalysts for the reaction of carbon dioxide and the oxirane group to afford the five‐membered cyclic carbonate group. The degrees of the carbon dioxide fixation depended on catalysts, concentration, and solvents. In solution reaction, the slower polymerizations resulted in faster carbon dioxide fixation, due to the faster carbon dioxide fixation to GMA than to oxirane moieties in polymers. When the polymerization was conducted in 1,4‐dioxane, which is a good solvent for polyGMA but a poor solvent for the analogous polymer bearing cyclic carbonate moieties, the resulting polymers were precipitated out as the progress of the polymerization and the carbon dioxide fixation. As a result, polymers could be isolated by simple filtration and rinsing with methanol. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3170–3176, 2009  相似文献   

2.
The dependence of the rate of polymerization on light intensity and the stereoregularity of the polymer was studied to elucidate the propagation and termination mechanisms of the photoinduced cationic polymerization of α-methylstyrene in the presence of tetracyanobenzene in methylene chloride. The rate of polymerization was proportional to the light intensity. The polymer is highly syndiotactic, and the stereoregularity is similar to that of polymers obtained by radiation-induced cationic polymerization. The initiation mechanism was also studied by electron spin resonance, by which the anion radical of tetracyanobenzene formed from a photoexcited complex between α-methylstyrene and tetracyanobenzene was observed. The cation radical of α-methylstyrene, counterpart of the anion radical, is believed to initiate the polymerization.  相似文献   

3.
Solution polymerizations of allyl(o-vinyl phenyl)ether and allyl(p-vinyl phenyl)ether with cationic and radical initiators were investigated. Soluble polymers were formed in polymerizations with boron trifluoride etherate and with benzoyl peroxide. In polymerization with azobisisobutyronitrile the polymerization in dilute solution gave a soluble polymer, whereas that in concentrated solution gave a crosslinked, insoluble one. For informationon the polymerization behavior some infrared and ultraviolet spectroscopic investigations of the soluble polymers were made. From these results it appears that polymers with pendant allyl groups are formed in polymerization with boron trifluoride etherate at low temperature, and polymers containing pendant vinyl groups and allyl groups are obtained with the two types of radical initiator. Copolymerizations of these monomers with ethyl vinyl ether and styrene with the use of boron trifluoride etherate were sucessfully effected. Such reactions as Claisen rearrangement, crosslinking induced with radical initiators, and epoxidation with perbenzoic acid were examined for the polymers prepared in the polymerization with boron trifluoride etherate. Good results were obtained for the former two reactions. However, the latter was unsuccessful.  相似文献   

4.
The morphology of polymers prepared through the photoinduced polymerization of oligo(carbonate dimethacrylate) in the presence of different nonpolymerizable additives (methanol, dinonyl phthalate, hexane, toluene, benzene, and carbon tetrachloride) is studied via the method of atomic force microscopy. Depending on the nature and concentration of an additive, the photoinduced polymerization of the above composite systems is shown to be accompanied by microphase separation and formation of a porous polymeric material. In the case of methanol, homogeneous porous structures with characteristic pore sizes of several hundred nanometers are formed. In the case of dinonyl phthalate, the characteristic pore sizes lie below 100 nm. The synthesized porous polymers can sorb both polar and nonpolar solvents. The photoinduced polymerization of an oligomer in the medium of toluene, benzene, or carbon tetrachloride leads to the formation of polymer nanoparticles whose dimensions are controlled by the nature of a solvent.  相似文献   

5.
Carbenes are known to activate carbon dioxide to form zwitterionic adducts. Their inherent metal-free redox activity remains understudied. Herein, we demonstrate that zwitterionic adducts of carbon dioxide formed with cyclic(alkyl)(amino) carbenes are not only redox active, but they can mediate the stoichiometric reductive disproportionation of carbon dioxide to carbon monoxide and carbonate. Infrared spectroelectrochemical experiments show that the reaction proceeds through an intermediate radical anion formed by one-electron reduction, ultimately generating a ketene product and carbonate in the absence of additional organic or inorganic reagents.  相似文献   

6.
The usefulness of liquid carbon dioxide as a solvent for polymerization of ethylene was studied. The effect of liquid carbon dioxide on the polymerization was investigated under conditions of the pressure of 400 kg./cm.2 over the temperature range 20–45°C. by using γ-radiation and AIBN as initiators. The infrared spectrum of the polymers showed that carbon dioxide had little effect on the polymer structure. The polymers contained no combined carbon dioxide and only small amounts of vinylidene unsaturation. The methyl content of the polymers was 0.5–4.0 CH3/1000C. The polymer yield and molecular weight were found to be decreased by the addition of carbon dioxide in both polymerization by γ-radiation and AIBN. The number of polymer molecules formed per unit time increased with the content of carbon dioxide in the γ-ray polymerization, and was constant in the case of AIBN. The advantages of the use of liquid carbon dioxide as a solvent in this polymerization were also considered from the viewpoints of the continuous process, the separation of polymer, the stability of carbon dioxide to radiation, and commercial applications.  相似文献   

7.
超临界CO2中的高分子合成研究进展   总被引:7,自引:0,他引:7  
本文介绍以超临界CO2流体为介质的高分子合成的研究进展。说明可在超临界二氧化碳中实施氟代单体的自由基溶液聚合、甲基丙烯酸甲酯和苯乙烯的分散聚合、丙烯酸的沉淀聚合、丙烯酰胺的反相乳液聚合以及异丁基乙烯基醚的阳离子聚合等多种聚合反应。这显示出超临界CO2是一种对环境无污染且价廉的替代溶剂。  相似文献   

8.
Polyisoprene popcorn polymer has been shown to exhibit the typical properties of this class of polymers–insolubility and ability to propagate at a rate dm/dt-km. In contrast to butadiene popcorn, polyisoprene popcorn polymer (PIP) does not show marked variations in growth activity with growth generations.

Oxidation of PIP proceeds in four distinct stages: induction, acceleration, deceleration, and final periods. The growth was found to be independent of the presence or absence of an induction period, hence, the length of an induction period cannot be correlated with the number of free radical sites extant on the polymer.

When PIP oxidations are carried out in the presence of water vapor there is no change in the induction or acceleration rate curves; during the deceleration period, however, water adds to the polymer system. Secondary oxidation reactions become prominent during this stage of the reaction.

Solubility studies show that scission of most of the effective chains occurs during the very early stages of the oxidation.  相似文献   

9.
The polymerization of diallyl oxalate was conducted in the presence of radical initiators at a high temperature range of 80–180°C; a large decrease in degree of polymerization, an increase in residual unsaturation of the resulting polymer, and the evolution of carbon dioxide were observed with the elevation of temperature. These findings were reasonably interpreted by considering the dismutation of the uncyclized growing radical to yield the allyl radical, carbon dioxide, and polymer carrying a terminal double bond. The kinetics of the polymerization of diallyl oxalate in the evolution of carbon dioxide at elevated temperatures were also discussed in detail.  相似文献   

10.
The development of novel polymerization capable of yielding polymers with low molecular weight distribution (Đ) is essential and significant in polymer chemistry, where monofunctional initiator contains only one initiation site in these polymerizations generally. Here, ketyl radical anion species is introduced to develop a novel Ketyl Mediated Polymerization (KMP), which enables radical polymerization at carbon radical site and anionic ring-opening polymerization at oxygen anion site, respectively. Meanwhile, polymerization and corresponding organic synthesis generally couldn't be performed simultaneously in one pot. Through KMP, organic synthesis and polymerization are achieved in one pot, where small molecules (cyclopentane derivates) and polymers with low Đ are successfully prepared under mild condition simultaneously. At the initiation step, both organic synthesis and polymerization are initiated by single electron transfer reaction with ketyl radical anion formation. Cyclopentane derivates are synthesized through 3–3 coupling reaction and cyclization. Polystyrene and polycaprolactone with low Đ and a full monomer conversion are prepared by KMP via radical polymerization and anionic ring-opening polymerization, respectively. This work therefore enables both organic synthesis and two different polymerizations from same initiation system, which saves time, labour, resource and energy and expands the reaction mode and method libraries of organic chemistry and polymer chemistry.  相似文献   

11.
超临界CO2在高分子合成与制备中的应用   总被引:6,自引:0,他引:6  
介绍超临界二氧化碳流体作为介质在高分子合成与制备中的研究进展。文中表明,可在超临界二氧化碳中实施氟代单体的自由基溶液聚合、甲基丙烯酸甲酯的分散聚合、丙烯酸的沉淀聚合、丙烯酰胺的反相乳液聚合以及异丁基乙烯基醚的阳离子聚合等多种聚合反应,可用超临界二氧化碳溶胀聚合法制备梯度共混物。此外,超临界二氧化碳还可用于聚合物分级和聚合物微孔、微纤与微球材料的制备等,显示出超临界二氧化碳是一种对环境无污染且价廉的  相似文献   

12.
The surface of silica was modified by mercaptopropyl, chloropropyl, aminopropyl, and methacryloxypropyl groups by the treatment of silica with the corresponding silane coupling agents, and the effects of functional groups on the surface on the polymerization of vinyl monomers initiated by benzoyl peroxide or 2,2-azobisisobutyronitrile were investigated. Although the rate of the polymerization of vinyl monomers in the presence of silica was almost equal to that in the absence of silica, a part of polymer formed was grafted onto silica surface. The polymerization was considerably retarded in the presence of these functionalized silicas and the corresponding polymers were effectively grafted onto the surface. The molecular weight of ungrafted polymer formed in the presence of the functionalized silica was lower than that formed in the presence of unmodified silica. This indicates that the chain transfer reaction of growing polymer radical to functionalized silica surface forms radicals on the surface, which then couples with growing polymer radical and/or reinitiates the polymerization to give rise to the grafting of polymers onto the surface. In the case of silica having methacryloxypropyl groups, the grafting based on the copolymerization of vinyl monomer with the surface methacryloxypropyl groups was considered to successfully proceed.  相似文献   

13.
Soluble polystyrene supports with optimal molecular structures for iterative phosphoramidite chemistry were prepared by atom‐transfer radical polymerization (ATRP) and subsequent chain‐end modification steps. The controlled radical polymerization of styrene was first performed in the presence of an 9‐fluorenylmethoxycarbonyl (Fmoc)‐protected amino‐functional ATRP initiator. Soluble supports of different molecular weight were prepared. Size‐exclusion chromatography and NMR analysis indicated formation of well‐defined polymers with controlled chain lengths and narrow dispersity. After synthesis, the bromo ω end group of the ATRP polymer was removed by dehalogenation in the presence of tributyltin hydride, and the Fmoc protecting group of the α moiety was subsequently cleaved with piperidine. The resulting α‐primary amine was afterwards treated with a linker containing a carboxyl group, a cleavable ester site, and a dimethoxytrityl‐protected hydroxyl group to afford ideal soluble supports for phosphoramidite chemistry. NMR analysis indicated that these chain‐end modifications were quantitative. The supports were tested for the synthesis of a non‐natural sequence‐defined oligophosphates. High‐resolution ESI‐MS analysis of the cleaved oligomers indicated formation of uniform species, and thus confirmed the efficiency of the ATRP‐made soluble polymer supports. In addition, the synthesis of a thymidine‐loaded soluble support was achieved.  相似文献   

14.
In this study, a novel application of radical addition‐coupling polymerization (RACP) for synthesis of hyperbranched polymers is reported. By Cu/PMDETA‐mediated RACP of 2‐methyl‐2‐nitrosopropane with trimethylolpropane tris(2‐bromopropionate) or a bromo‐ended 3‐arm PS macromonomer, two types of hyperbranched polymers with high degree of polymerization are synthesized under mild conditions, respectively. The chemical structures of the hyperbranched polymers are carefully characterized. By selective degradations of the ester groups and weak bonds of NO? C in the polymers, high degree of alternative connection of the two monomers in the synthesized polymers have been identified. Based on the experimental results, mechanism of formation of the hyperbranched polymer is proposed, which includes formation of carbon radicals from the tribromo monomer through single electron transfer, its capture by 2‐methyl‐2‐nitrosopropane that results in nitroxide radical, and cross‐coupling reaction of the nitroxide radical with other carbon radicals. Hyperbranched polymer can be formed in a step‐growth mode after multiple steps of such reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 904–913  相似文献   

15.
Ultrasound-induced cavitation is known to enhance chemical reactions as well as mass transfer at ambient pressures. Ultrasound is rarely studied at higher pressures, since a high static pressure hampers the growth of cavities. Recently, we have shown that pressurized carbon dioxide can be used as a medium for ultrasound-induced reactions, because the static pressure is counteracted by the higher vapor pressure, which enables cavitation. With the use of a dynamic bubble model, the possibility of cavitation and the resulting hot-spot formation upon bubble collapse have been predicted. These simulations show that the implosions of cavities in high-pressure fluids generate temperatures at which radicals can be formed. To validate this, radical formation and polymerization experiments have been performed in CO2-expanded methyl methacrylate. The radical formation rate is approximately 1.5*1014 s−1 in this system. Moreover, cavitation-induced polymerizations result in high-molecular weight polymers. This work emphasizes the application potential of sonochemistry for polymerization processes, as cavitation in CO2-expanded monomers has shown to be a clean and safe route to produce polymers with a controlled molecular weight.  相似文献   

16.
Supercritical carbon dioxide (scCO2) is an inexpensive and environmentally friendly medium for radical polymerizations. ScCO2 is suited for heterogeneous controlled/living radical polymerizations (CLRPs), since the monomer, initiator, and control reagents (nitroxide, etc.) are soluble, but the polymer formed is insoluble beyond a critical degree of polymerization (Jcrit). The precipitated polymer can continue growing in (only) the particle phase giving living polymer of controlled well‐defined microstructure. The addition of a colloidal stabilizer gives a dispersion polymerization with well‐defined colloidal particles being formed. In recent years, nitroxide‐mediated polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition fragmentation chain transfer (RAFT) polymerization have all been conducted as heterogeneous polymerizations in scCO2. This Highlight reviews this recent body of work, and describes the unique characteristics of scCO2 that allows composite particle formation of unique morphology to be achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3711–3728, 2009  相似文献   

17.
Oxoaminium salt ( 1 ), derived from 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, 2 ) by one-electron oxidation, could be an initiator for cationic polymerization of vinyl monomers such as isobutyl vinyl ether (IBVE), 2,3-dihydrofuran, p-methoxystyrene, N-vinyl pyrrolidone, etc., to give the corresponding polymers, when 1 had a low nucleophilic counter anion. Formation of the adducts of 1 and IBVE as well as 1H-NMR and IR data suggested the formation of polymers containing N? O? C structure as the polymer head group. In the polymerization of IBVE, the effects of solvent and concentration of 1 were little observed, however the polymerization rate was dependent on temperature. Furthermore, the thermal reaction of the polymers obtained, which were regarded as prepolymers for block copolymerization and polymeric initiators for radical polymerization, was studied. For example, poly(2-benzylidene-1,3-dioxane) obtained by the polymerization of 2-benzylidene-1,3-dioxane with oxoaminium hexafluoroantimonate ( 1, X = SbF6) was employed as an initiator for radical polymerization of MMA to give its block copolymer with PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Acrylic groups containing phosphonic acids were synthesized by ether formation of ethyl α‐chloromethylacrylate with hydroxyalkyl phosphonates and subsequent hydrolysis to the corresponding phosphonic acid α‐methylsubstituted acrylates. Furthermore, phosphonic acids derived from acrylonitrile and acrylamide were synthesized. The monomers are hydrolytically stable in aqueous ethanol. The radical polymerization of the monofunctional phosphonic acids results in water soluble polymers, whereas in case of a phosphonic acid diacrylate a cross‐linked polymer was formed. The most radical polymerizable phosphonic acids can be used to promote the adhesion to dentin.  相似文献   

19.
To investigate oxygen-containing structures in PVC, arising for example from the presence of air in technical polymerization vessels, vinyl chloride (VC) suspension polymerizations were performed with various amounts of added oxygen. Quantitative investigations demonstrated that the low molecular peroxides formed in the induction period decompose, resulting in hydrogen chloride, formaldehyde and carbon monoxide. Residual peroxides have been determined in the final copolymers and found to be mainly responsible for the considerable reduction in the thermal stability. Considerable evidence is provided that carbon monoxide, copolymerized with VC, is incorporated as a carboxylic acid sidegroup. It is considered to arise from a 1,2 chlorine shift to the carbonyl radical chain-end. The resulting acryloyl chlorides are capable of reacting with water, alcohols or amines to yield the corresponding acids, esters or amides. A new i.r. band at 1770 cm?1 after alkali treatment of VC-CO copolymers containing acrylic acid groups is suggested as caused by the formation of butyrolactone structures. Butyrolactone formation by methyl chloride evolution was also observed in thermal degradation of VC-CO copolymers containing methyl acrylate units. The rates of dehydrochlorination of the copolymers are not very different from those of pure suspension PVC.  相似文献   

20.
Fluoropolymers are used in many technologically demanding applications because of their balance of high-performance properties. A significant impediment to the synthesis of variants of commercially available amorphous fluoropolymers is their general insolubility in most solvents except chlorofluorocarbons (CFCs). The environmental concerns about CFCs can be circumvented by preparing these technologically important materials in supercritical fluids (SCFs). The homogeneous solution homo- and copolymerization of highly fluorinated acrylic, styrenic and olefinic monomers in supercritical carbon dioxide using free radical methods will be discussed [Science, 257 , 945 (1992)]. Detailed decomposition rates and efficiency factors will be presented for azobisisobutyronitrile (AIBN) in supercritical carbon dioxide and will be compared to conventional liquid solvents [Macromolecules, 26 , 2663 (1993)]. Additionally, viscosities of polymer solutions in supercritical CO2 have been measured using a high pressure, falling cylinder viscometer. The results show that the polymer solution viscosities in supercritical CO2 are an order of magnitude lower than with the same polymers in conventional organic solvents. The results from these homogeneous solution polymerization studies has allowed us to also consider heterogeneous polymerizations in a carbon dioxide continuous phase. Conventional emulsion polymerizations of unsaturated monomers are performed in either aqueous or organic dispersion media with addition of surface active agents (surfactants) to stabilize the colloidal dispersion that forms. With free radical initiators that are preferentially soluble in the continuous phase, high rates of polymerization and high molar mass polymers can be obtained simultaneously. Herein we describe an environmentally responsible alternative to aqueous and organic dispersing media for emulsion polymerizations which utilizes supercritical carbon dioxide, in conjunction with molecularly engineered free radical initiators and amphiphilic molecules that are specifically designed to be interfacially active in CO2. Conventional lipophilic monomers, exemplified by methyl methacrylate and styrene, can be polymerized heterogeneously using a fluorinated azo-initiator in supercritical CO2 in the presence of added surfactant to form stable emulsions that result in submicron size particles. Detailed surfactant and initiator syntheses and phase behavior will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号