首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we have synthesized TiO2 nanoparticles, using either a sol–gel base catalysed process in the interior of CTAB reversed micelles (TiO2 CTAB sol), or the neutralization of a TiO2/H2SO4 solution in the interior of AOT reversed micelles. From the absorption and emission data of the TiO2 nanoparticles it is possible to conclude that in the sol–gel route there remains alkoxide groups in the structure, originating transitions lower than the energy gap of TiO2 semiconductor. These transitions disappear in the neutralization procedure, where the alkoxide groups are absent in the structure. We have assigned the observed indirect and direct optical transitions according to the anatase band structure. TiO2 Langmuir-Blodgett (LB) films were prepared either by direct deposition of titanium isopropoxide or by deposition of the TiO2 CTAB sol. These films showed photoluminescence, which was attributed to band-gap emission and to surface recombination of defect states.  相似文献   

2.
Polyurethane foams with various isocyanate/polyol ratios, reinforced with various amounts of nanosized TiO2, were prepared and their morphological properties were investigated. The nanoparticles were dispersed into the polyol component by stirring and then heating during ultrasonication to avoid particle agglomeration. Both scanning electron and transmission optical microscopes were used to evaluate the role of the nanosized TiO2 on the porous structure of the polyurethane foams. Cell size distributions were obtained by measuring the average cell diameters of the cells in the micrographs. To have a better assessment of nanoparticle effects on the foam morphology sample densities were measured using Archimedes law. For better understanding of microstructure evolution the heat release rate during the foaming process was characterized. The results showed that the values of cell size, cell density, apparent density and heat release rate depended on the ratio of isocyanate/polyol as well as TiO2 content.  相似文献   

3.
本文对大别山双河、碧溪岭地区硬玉石英岩中的金红石进行了Fourier变换红外光谱(FTIR)分析, 结果显示所有金红石颗粒分别在3280 cm-1和3295 cm-1 出现强的吸收峰. 基于前人提出H在金红石结构中以孔道中心(CC)和八面体共边(BOE)方式存在的两种模型, 本文采用第一性原理计算方法研究了掺杂(Al, H)和(Fe, H)时金红石相TiO2的晶体结构和电子结构. 根据O—H键的振动频率和O—H…O键中O—O之间距离的经验关 关键词: 2')" href="#">金红石相TiO2 孔道中心 电子结构 第一性原理  相似文献   

4.
Doping with transition metal ions in TiO2 has been found effective to modify the electronic structure of TiO2 nanoparticles. Application of synchrotron radiation photoelectron spectroscopy (SRPES) to Nd-doped TiO2 nanoparticles revealed that there existed different peak positions and structure with different doping concentration in the valence band spectra. From the onset of valence band spectrum, it was observed that doping Nd ions alters the electronic structure and makes the band gap of TiO2 narrow.  相似文献   

5.
Caie Lai  Wenyi Ye  Huiyong Liu  Wenji Wang 《Ionics》2009,15(3):389-392
The TiO2-coated LiMn2O4 has been prepared by a carrier transfer method and investigated. This novel synthetic method involved the transfer of TiO2 into the surface of LiMn2O4 with Vulcan XC-72 active carbon powders as a dispersant. The X-ray diffraction shows that spinel structure of materials does not change after the coating of TiO2. The electrochemical performance tests show that the initial discharge capacity of TiO2-modified LiMn2O4 is 111.5 mA h g−1, which is better than that of pristine LiMn2O4 (103.8 mA h g−1). The cyclic performance is significantly improved after surface modification. The TiO2-modified LiMn2O4 by a carrier transfer method exhibits better discharge capability and lower resistance.  相似文献   

6.
Three-dimensional networks of Fe(III)-doped TiO2 nanoparticles (2–4 nm) prepared from organic precursors are detected by Cryo-TEM (transmission electron microscopy) in an aqueous environment. High-resolution TEM studies show that the nanoparticles prefer to align along their crystallographic orientation. A novel energy transfer mechanism is suggested in which these three-dimensional networks act as antenna systems thus leading to an enhanced photocatalytic activity of the colloidal preparations.  相似文献   

7.
Marta Gałyńska 《Molecular physics》2017,115(17-18):2209-2217
ABSTRACT

Quantum chemical calculations for two TiO2 nanoparticle cluster models (rutile–(TiO2)n with n = 20, and anatase–(TiO2)n with n = 92), selected to represent different nanoparticle size regimes, are used to elucidate structural influences on the electronic properties. Structural and electronic properties were obtained using a variety of computational methods and structure optimisation schemes, including a comparison of results for several different density functional theory functionals, as well as complementary Hartree–Fock and semi-empirical calculations. The results demonstrate a strong dependence of electronic properties, such as the optical band gap of importance for photoelectrochemical and photocatalytic applications, on the structure of the nanocrystal. From a methodological point of view, the calculations also provide useful information of broader significance about the viability of different computational schemes to efficiently obtain reliable computational results for intrinsically nanostructured materials.  相似文献   

8.
ABSTRACT

Titanium dioxide (TiO2) nanocrystals are promising materials for photo-electrochemical water splitting. This study focuses on how surface dopant placement can affect the electronic properties. TiO2 anatase thin films are doped two ways: a cobalt ion replacing a surface titanium ion (surface ingrained) and a cobalt ion chemisorbed to two surface oxygen ions and two NH3 ligands. Specifically, when studying the binding pattern, the cobalt ion dopant changes from an electron acceptor for the surface ingrained model to an electron donor for the chemisorbed model. The optical absorption peaks of the surface ingrained model are attributed to p→d transitions and are much stronger when compared to the d→d transitions for the chemisorbed model. It is the conclusion of this computational study that one can alter the cobalt dopant on the anatase thin film to focus a positive or negative charge at the surface by changing the surface dopant location.  相似文献   

9.
10.
In this work, TiO2-SiO2-In2O3 composite thin films on glass substrates were prepared by the sol-gel dip coating process. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF) and X-ray photoelectron spectroscopy (XPS) were used to evaluate the structural and chemical properties of the films. UV-vis spectrophotometer was used to measure the transmittance spectra of thin films. The water contact angle (WCA) of thin films during UV/vis irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that fabrication of composite film has a significant effect on transmittance and superhydrophilicity of TiO2 films.  相似文献   

11.
TiO2 thin film was fabricated by dip coating method using titanium IV chloride as precursor and sodium carboxymethyl cellulose as thickening as well as capping agent. Structural and morphological features of TiO2 thin film were characterized by X-ray diffractometer and field emission scanning electron microscope, respectively. Crystallinity of the film was confirmed with high-intensity peak at (101) plane, and its average crystallite size was found to be 28 nm. The ethanol-sensing properties of TiO2 thin film was studied by the chemiresistive method. Furthermore, various gases were tested in order to verify the selectivity of the sensor. Among the several gases, the fabricated TiO2 sensor showed very high selectivity towards ethanol at room temperature.  相似文献   

12.
N doped TiO is nonmagnetic, in which spin-split impurity states are not induced near the Fermi energy (EF) by N dopant. N doped TiO2 along with transition-metal (TM) doped TiO is magnetic, in which spin-split impurity states are induced across EF. The magnetic moment is determined by the 3d4s electron configurations and the valence states of TM-dopant ions when they substitute Ti. Hence, the origin of ferromagnetism of N doped TiO2 and TiO is not closely related to the width of the band gaps of host oxides, but would be crucially related to that if the dopant can induce spin-split impurity states near EF.  相似文献   

13.
Polylactide (PLA)/poly(ethylene-co-octene)(POE) blends with various contents of nano-SiO2 were prepared via melt mixing. The structure and properties of the PLA/POE/nano-SiO2 ternary composites were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheometry, and tensile testing. The particle size of the dispersed POE phase first decreased with increasing nano-SiO2 content and then remained constant. Nano-SiO2 played an important role in the heterogeneous nucleation of PLA, which resulted in an increase of the crystallinity of PLA. The synergistic effect of both POE and nano-SiO2 can significantly improve the toughness, strength, and modulus of PLA. When the ratio of PLA/POE/nano-SiO2 was 90/10/0.5, PLA/POE/nano-SiO2 composite had the best comprehensive properties.  相似文献   

14.
Dilute magnetic oxides are without doubt among the most interesting classes of magnetic materials. However, the nature of their electronic structure and magnetic exchange is far from understood. Here, we apply the ab initio augmented spherical wave (ASW) method, with corrected generalised gradient approximation to study the electronic structure and magnetic properties of doped TiO2 rutile with double impurities. The study reveals a half-metallic ferromagnetic behaviour for Ti1?2x Cr x Mo x O2, and the local magnetic moments of the impurities and their oxidation states agree with the charge transfer between Cr and Mo, which would lead to the ferromagnetic state through the double-exchange mechanism in transition metal oxides.  相似文献   

15.
The surface interaction between TiO2 and natural zeolite, clinoptilolite, has been investigated by means of transmission electron microscope (TEM), atom force microscope (AFM), X-ray diffractometer (XRD), diffuse reflectance infrared Fourier transform (DRIFT) and far Fourier transform infrared ray (FTIR) spectroscopy. And the photocatalytic degradation (PCD) rate of methyl orange (MO), a model of recalcitrant azo dye, in aqueous system has been measured to compare the photocatalytic activities of different photocatalysts. A model has been carried out to explain the incorporation between TiO2 particles and natural zeolite. The results show that the TiO2 particles loaded on zeolite are 50 nm or so, smaller than the pure one, and combine with zeolite via chemical force. Since the reserved adsorption ability and the existence of electron trapper, the TiO2-zeolite performed more efficient at low initial concentration and in the later period of PCD process, as compared with pure TiO2 nanopowders.  相似文献   

16.
张小超  赵丽军  樊彩梅  梁镇海  韩培德 《物理学报》2012,61(7):77101-077101
采用基于密度泛函理论的第一性原理方法对未掺杂以及不同浓度过渡金属Fe,Co,Ni,Zn掺杂金红石TiO2的超晶胞体系进行了几何优化,并讨论了其晶格常数,电子能带结构和光学性质.研究结果表明:掺杂前后的晶格参数与实验值偏差在3.6%以下;适量的过渡金属掺杂不但影响体系能带结构,拓宽光吸收范围,而且扮演着俘获电子的重要角色,有利于光生电子-空穴对的有效分离以及增强光吸收能力;Fe,Co,Ni,Zn最佳理论掺杂体系分别为Ti0.75Fe0.25O2,Ti0.75Co0.25O2,Ti0.75Ni0.25O2,Ti0.83Zn0.17O2;Fe,Co,Ni3d态分裂为t2g和eg态,分别贡献于价带高能级和导带低能级部分,促进了电子-空穴对的生成,从而可提高TiO2的光催化性能;Zn3d态电子成对填满轨道,不易被激发,故光催化活性无明显提高.  相似文献   

17.
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA–PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.  相似文献   

18.
This paper investigated the gaseous formaldehyde degradation by the amine-functionalized SiO2/TiO2 photocatalytic films for improving indoor air quality. The films were synthesized via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and 3-aminopropyltrimethoxysilane (APTMS). The physicochemical properties of prepared photocatalysts were characterized with N2 adsorption/desorption isotherms measurement, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT/IR). The effect of amine-functional groups and the ratio of MTMOS/APTMS precursors on the formaldehyde adsorption and photocatalytic degradation were investigated. The results showed that the formaldehyde adsorption and photocatalytic degradation of the APTMS-functionalized SiO2/TiO2 film was higher than that of SiO2/TiO2 film due to the surface adsorption on amine sites and the relatively high of the specific surface area of the APTMS-functionalized SiO2/TiO2 film (15 times higher than SiO2/TiO2). The enhancement of the formaldehyde degradation of the film can be attributed to the synergetic effect of adsorption and subsequent photocatalytic decomposition. The repeatability of photocatalytic film was also tested and the degradation efficiency was 91.0% of initial efficiency after seven cycles.  相似文献   

19.
Polyethersulfone (PES)/TiO2 composite membranes were prepared by phase inversion method with nano-TiO2 as additive. The influence of TiO2 on the morphologies and the performances of PES/TiO2 membranes were investigated through the methods of SEM, XRD, TGA, contact angle goniometer, mechanical strength tests and filtration experiments. The results showed that the structure of membrane was not obviously affected by addition of TiO2, and the performances such as hydrophilicity, thermal stability, mechanical strength and anti-fouling ability of membrane were enhanced through adding TiO2 nanoparticles. At 0.5 wt.% TiO2 content, the composite membrane has an excellent performance, however higher TiO2 content (than 0.5 wt.%) resulted in defective pore structure of the membranes and decline of the performances, such as permeability and mechanical strength. TGA and mechanical strength analyses indicated good compatibility between polymers and TiO2 nanoparticles.  相似文献   

20.
Low-frequency ultrasound (LFUS) irradiation induces morphological, optical and surface changes in the commercial nano-TiO2-based photocatalyst, Evonik-Degussa P-25. Low-temperature electron spin resonance (ESR) measurements performed on this material provided the first experimental evidence for the formation of oxygen vacancies (Vo), which were also found responsible for the visible-light absorption. The Vo surface defects might result from high-speed inter-particle collisions and shock waves generated by LFUS sonication impacting the TiO2 particles. This is in contrast to a number of well-established technologies, where the formation of oxygen vacancies on the TiO2 surface often requires harsh technological conditions and complicated procedures, such as annealing at high temperatures, radio-frequency-induced plasma or ion sputtering.Thus, this study reports for the first time the preparation of visible-light responsive TiO2-based photocatalysts by using a simple LFUS-based approach to induce oxygen vacancies at the nano-TiO2 surface. These findings might open new avenues for synthesis of novel nano-TiO2-based photocatalysts capable of destroying water or airborne pollutants and microorganisms under visible light illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号