首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aqueous lanthanide chloride solutions with 1 : 40 molar ratio have been studied by X-ray diffraction. Quantitative characteristics of the short-range environment of ions in solutions have been determined using model approach to analysis of experimental data. It has been confirmed that the number of molecules in the short-range environment decreases from nine to eight on passing from light to heavy cations. In so doing, three-caped trigonal prism coordination spheres of cations become two-caped one. Cations also form second coordination spheres composed of 8–10 solvent molecules. Noncontact ion associates form in all the systems.  相似文献   

2.
The theories of viscoelasticity of chain-molecule solutions, based on the bead-spring model, have been modified to take into account approximately the effect of interactions among chain molecules. The motion of a given chain molecule has been analyzed in detail while all other chain molecules have been treated as a background of uniformly distributed beads in which the given chain molecule is suspended. The inclusion of intermolecular interactions leads to a hydrodynamic interaction tensor, which after averaging, differs from that of Kirkwood by a concentration-dependent correction term. The modified theory correctly predicts the transition from the non-draining to the free-draining behavior which has been observed in chain-molecule solutions as their concentrations are increased.  相似文献   

3.
An attempt is made to apply dielectric theories of interfacial polarization to observations of dielectric relaxations for W/O emulsions. Approximate formulas for disperse systems in a W/O type were derived from the two theories: one proposed by Maxwell and Wagner for dilute disperse systems of spherical particles, and the other developed by Hanai for concentrated disperse systems. Dielectric measurements were carried out on concentrated W/O emulsions prepared from kerosene and distilled water or KCl aqueous solutions by minimal use of emulsifiers. Marked dielectric relaxations were observed with the emulsions, the dielectric parameters having been determined to characterize the relaxation data. Phase parameters such as relative permittivity, electric conductivity and volume fraction of the disperse phase were evaluated from the dielectric parameters by use of the approximate formulas of the respective theories. The phase parameters evaluated and the frequency dependence of complex permittivity of the W/O emulsions deduced from the theory for concentrated disperse systems are in excellent agreement with the observed data in comparison to that for dilute disperse systems. It is concluded that the dielectric relaxations due to the interfacial polarization of disperse systems of spheres are explained satisfactorily by the theory for concentrated disperse systems.  相似文献   

4.
A density functional theory is presented to study the effect of attractions on the structure of polymer solutions confined between surfaces. The polymer molecules have been modeled as a pearl necklace of freely jointed hard spheres and the solvent as hard spheres, both having Yukawa-type attractions and the mixture being confined between attractive Yukawa-type surfaces. The present theory treats the ideal gas free energy functional exactly and uses weighted density approximation for the hard chain and hard sphere contributions to the excess free energy functional. The attractive interactions are calculated using the direct correlation function obtained from the polymer reference interaction site model theory along with the mean spherical approximation closure. The theoretical predictions on the density profiles of the polymer and the solvent molecules are found to agree quite well with the Monte Carlo simulation results for varying densities, chain lengths, wall separations, and different sets of interaction potentials.  相似文献   

5.
Diffusiophoresis phenomenon of aoft particles suspended in binary electrolyte solutions is explored theoretically in this study based on the spherical cell model, focusing on the chemiphoresis component in absence of diffusion potential. Both the electrostatic and hydrodynamic aspects of the boundary confinement, or steric effect, due to the presence of neighboring particles are examined extensively under various electrokinetic conditions. Significant local extrema are found in mobility profiles expressed as functions of the Debye length in general, synchronized with the strength of the motion-inducing double layer polarization. Moreover, a seemingly peculiar phenomenon is observed that the soft particles may move faster in more concentrated suspensions. The competition between the simultaneous enhancement of the motion-inducing electric driving force and the motion-retarding hydrodynamic drag force from the boundary confinement effect of the neighboring particles is found to be responsible for it. The above findings are also demonstrated experimentally in a very recent study on the diffusiophoretic motion of soft particles through porous collagen hydrogels. The results presented here are useful in various practical applications of soft particles like drug delivery.  相似文献   

6.
Bounded potentials are good models to represent the effective two-body interaction in some colloidal systems, such as the dilute solutions of polymer chains in good solvents. The simplest bounded potential is that of penetrable spheres, which takes a positive finite value if the two spheres are overlapped, being 0 otherwise. Even in the one-dimensional case, the penetrable-rod model is far from trivial, since interactions are not restricted to nearest neighbors and so its exact solution is not known. In this paper the structural properties of one-dimensional penetrable rods are studied. We first derive the exact correlation functions of the penetrable-rod fluids to second order in density at any temperature, as well as in the high-temperature and zero-temperature limits at any density. It is seen that, in contrast to what is generally believed, the Percus-Yevick equation does not yield the exact cavity function in the hard-rod limit. Next, two simple analytic theories are constructed: a high-temperature approximation based on the exact asymptotic behavior in the limit T--> infinity and a low-temperature approximation inspired by the exact result in the opposite limit T--> 0. Finally, we perform Monte Carlo simulations for a wide range of temperatures and densities to assess the validity of both theories. It is found that they complement each other quite well, exhibiting a good agreement with the simulation data within their respective domains of applicability and becoming practically equivalent on the borderline of those domains. A comparison with numerical solutions of the Percus-Yevick and the hypernetted-chain approximations is also carried out. Finally, a perspective on the extension of our two heuristic theories to the more realistic three-dimensional case is provided.  相似文献   

7.
We investigate the phase behavior of a model for colloidal hard platelets and rigid discotic molecules: oblate hard spherocylinders (OHSC). We perform free energy calculations using Monte Carlo simulations to map out the phase diagram as a function of the aspect ratio L∕D of the particles. The phase diagram displays a stable isotropic phase, a nematic liquid crystal phase for L∕D≤0.12, a columnar phase for L∕D?0.3, a tilted crystal phase for L?0.45, and an aligned crystal phase for L∕D?0.45. We compare the results to the known phase diagram of hard cut spheres. Thin cut spheres are almost cylinder-shaped, while the interactions between real discotic mesogens and colloidal platelets are more consistent with the toroidal rims of the OHSC. Since the shapes of the OHSC and the cut spheres are otherwise similar, the phase diagrams of the two types of particles are quite akin. However, the tilted crystal phase for OHSC, which is of a crystal type that is frequently found in experiments on disklike molecules, has not been found for hard cut spheres. Furthermore, although we have found a cubatic phase, it was shown to be definitely unstable, whereas the stability of the cubatic phase of cut spheres is still disputed. Finally, we also show that the phase boundaries differ significantly from those for cut spheres. These are remarkable consequences of a subtle change in particle shape, which show that for a detailed comparison with the phase behavior of experimental particles, the OHSC should be used as a model particle.  相似文献   

8.
Functionalization of glassy carbon spheres have been carried out by microwave irradiation in the presence of modifier molecules through oxidation followed by amidation reaction. The glassy carbon spheres were initially catalyzed by treating with concentrated nitric acid to introduce surface-bound carboxylic groups, and its subsequent amidation reaction in the presence of p-nitroaniline yields p-nitroanilide-functionalized substrate materials. These derivatized glassy carbon spheres have been electrochemically characterized by immobilizing them on bppg electrode and studying its voltammetric behavior. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy studies have revealed that the modifying molecules are surface bound and covalently attached on the carbon substrate.  相似文献   

9.
In this paper, we show that a few coumarin dye solutions exhibit dual amplified spontaneous emission (ASE) spectra under pulsed laser excitation, though all these solutions exhibit only one fluorescence band under steady-state conditions. The anomalous band, appearing only in ASE spectra, had been attributed to the superexciplex--a new molecular species. This is made of two excited molecules and is obtainable only under pulsed laser excitation. This complex is different from the well known excimer or exciplex, wherein only one atom or molecule is in the excited state. The superexciplex is possible with the two polar excited molecules coming together to form an excited state association, with the solvent acting as some sort of bridge. With very polar dye molecules, such an association is possible even with the inert benzene acting as a bridge; otherwise solvents like ethyl acetate, with an oxygen atom, is necessary for the linkage.  相似文献   

10.
Silica gels containing solutions of glucose in heavy water at different concentrations have been prepared by a sol-gel method. Dynamical studies with quasielastic neutron scattering, compared with previous results on bulk solutions, show that the dynamics of the glucose molecules are not appreciably affected by the confinement, even though the gels behave macroscopically as solid materials. Small-angle neutron-scattering spectra on the same systems, fitted with a fractal model, yield a correlation length that decreases from 20 to 2.5 nm with increasing glucose concentration, suggesting a clustering of glucose molecules in concentrated solutions that is consistent with the dynamical measurements. These two sets of results imply that 20 nm is an upper limit for the scale at which the dynamics of glucose molecules in solution are affected by confinement.  相似文献   

11.
Piperazine and 1,2-diaminobenzene have been previously used as anchoring molecules to synthesize 3-hydroxy-4-pyridinone (3,4-HPO) tetradentate ligands affording ligands with different flexibility and coordination properties. In order to have a relatively rigid and hindered structure, a porphyrin platform was selected to anchor one or two 3,4-HPO chelating units. This platform provides an additional N4 coordination sphere and also very interesting optical properties to the synthesized conjugates. Depending on the metal ion present in the porphyrin core, conjugates with different spectroscopic properties are obtained. EPR spectroscopy has been used to characterize the copper(II) metalloporphyrins and to monitor and identify the species formed upon addition of copper(II) to solutions of two porphyrin conjugates with one and two 3,4-HPO arms. The porphyrin conjugates having two 3,4-HPO units are ligands that provide two separate binding sites with N4 and O4 coordination spheres, which allow accommodation of two metal ion centers that may be distinguished by spectroscopic methods.  相似文献   

12.
13.
Fang L  Parti R  Hu P 《Journal of chromatography. A》2011,1218(41):7316-7324
N-acetyltryptophan (NAT) has long been used as a stabilizer in some protein solutions, such as human serum albumin, to prevent oxidative protein degradation. However, the fate of NAT has not been discussed in literature. Two NAT degradation products have been observed in concentrated albumin solutions (20% and 25%) and identified as 1-acetyl-3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid and 1-acetyl-3a,8a-dihydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid. To monitor the levels of these two previously unidentified NAT degradation products in concentrated albumin solutions, a fully automated method, incorporating online size exclusion chromatography (SEC) trapping and reversed-phase high performance liquid chromatography-mass spectrometry (HPLC-MS) with multiple reaction monitoring (MRM) analysis, has been developed and validated for their quantitative analysis. The method does not require an internal standard. The only sample manipulation is to obtain an albumin concentration of 4% in all standards and test HPLC samples. A limit of quantitation (LOQ) as low as 20 ng/mL has been achieved for both compounds. This method can readily be adopted for the quantitative determination of other small molecules in concentrated protein solutions.  相似文献   

14.
XAFS spectra of palladium(II) in concentrated HNO3/HClO4 acid mixtures have been recorded and analyzed. Structural parameters of the Pd(H2O)4(2+) complex and the mixed nitric Pd(NO3)2(H2O)2 complex, for the first time, were determined by the XAFS method. For pure 5 M HClO4 and for mixtures (0-0.3 M HNO3), the XAFS spectra of the 0.02 M Pd solutions are indeed very similar and originated from four Pd-O(w) equivalent distances. For the Pd(H2O)4(2+) square-planar aqua ion in strong perchloric acid, the use of an FEFF6 theoretical approach led to a first-shell Pd-O(w) distance of 2.00 (1) A and a Debye-Waller (DW) factor of sigma2 = 0.0030 (3) A2. Four water molecules are tightly bound to the Pd2+ ion in the equatorial plane, while two (or one) axial water molecules are weakly bound to the metal ion at 2.5 A with a DW factor of 0.015 (5) A2. For highly concentrated mixtures (4-6 M HNO3) and for pure concentrated (4-6 M) nitric acid as well as for crystalline powder Pd(NO3)2(H2O)2, the XAFS spectra are very similar and are determined by the mixed nitric complex Pd(NO3)2(H2O)2: four Pd-O near-equivalent distances of 2.01 (1) A from two H2O and two NO3 molecules with a total DW factor of sigma2 = 0.0037 (3) A2. Moreover, two Pd---N distances of 2.8-2.9 A were determined in the second coordination shell. Finally, for intermediate mixtures (1-3 M HNO3 in 5 M HClO4), the XAFS spectra are a superposition of the XAFS of Pd(H2O)4(2+) and Pd(NO3)2(H2O)2 complexes. The mean ligand number NO3(-) around Pd2+ has been calculated, and the XAFS results at pH close to zero confirm the spectrophotometric results previously published.  相似文献   

15.
Integral equation theories and Monte Carlo simulations were used to study the Donnan equilibrium, which is established by an equilibrium distribution of a simple electrolyte between an aqueous protein-electrolyte mixture and an aqueous solution of the same simple electrolyte, when these two phases are separated by a semipermeable membrane. In order to describe the unusually low osmotic pressure found in many experiments we assumed that protein molecules can form dimers. The model solution contains proteins in a monomeric form, represented as charged hard spheres, or in a dimerized form, modeled as fused charged hard spheres. The counterions and coions were also modeled as charged hard spheres but of a much smaller size. The associative mean spherical and hypernetted-chain approximations were applied to this model. In addition, Monte Carlo computer simulations were performed for the same model system mimicking a lysozyme solution in the presence of 0.1 M sodium chloride. Theory and simulations were found to be in reasonably good agreement for the thermodynamic properties such as chemical potential and osmotic pressure under these conditions. Using the theoretical approaches mentioned above, we analyzed the experimental data for the osmotic pressure of bovine serum albumin in 0.15 M sodium chloride, human serum albumin solution (HSA) in 0.1 M phosphate buffer, and lysozyme in sulphate and phosphate buffers. The theoretically determined osmotic coefficients were fitted to the existing experimental data in order to obtain the fraction of dimers in solution. Our analysis indicated that there was relatively small self-association of protein molecules for bovine serum albumin solutions at pH=5.4 and 7.3, with the fraction of dimers smaller than 10%, while at pH=4.5 the dimer fraction was equal to 50%. In the case of HSA solutions, strong negative deviations from the ideal value were found and at pH=8.0 a reasonably good agreement between the theory and experiment is obtained by assuming full dimerization. For HSA solution at pH=5.4, the best fit to the experimental results was obtained for a fraction of dimers equal to 80%.  相似文献   

16.
Based on the Maxwell-Wagner model, an analytical formula for effective dielectric constants is derived as a series expansion in powers of the volume fraction of spheres. Effective dielectric constants of simple cubic lattices of conducting particles suspended in dielectric or conducting fluids are calculated. The numerical results show that effective dielectric constants depend upon the ratios of the permeability of conducting spheres to that of the suspending fluids under high frequency (0.1-1 kHz) applied fields, whereas, it is determined by the ratios of the conductivities of spheres to that of fluids under low frequency or dc electric fields. The imaginary parts of effective dielectric constants can be very big sometimes. This means that the resistive losses of electrorheological fluids can be very strong at times. The effect of conduction in a system cannot be neglected in the design of high performance electrorheological fluids.  相似文献   

17.
During the process of self-association, reaching a thermodynamic equilibrium state in dilute solution is usually very fast, taking at most seconds for small organic (such as surfactants) solutions and hours for polymer solutions. It is very rare that days are necessary for soluble small organic molecules to reach thermodynamic stability in dilute solutions. This work reports such an unusually slow association of two polymerizable organic molecules, HOOC(CH2)3CCCC(CH2)3COOH and (EtO)3Si(CH2)3NH2, in their common solvent. The self-organization process of above complexes spanned several minutes to several days, depending on their concentrations. The morphologies of resultant aggregates, ranging from vesicles to solid spheres and to hollow spheres, were also tunable by varying the molar ratios of two precursors. Enriched functional COOH/NH2 groups on the aggregate surface can attach various antibodies, which endow the nanaoparticles with great potential applications as targeted drug-delivery vehicles. In addition, as-synthesized hybrid aggregates could be further stabilized by either addition reaction of diacetylenic acid or hydrolysis and condensation reactions of 3-aminopropyltriethoxysilane. In particular, the derived polydiacetylenic aggregates demonstrate a thermochromatic property and may be applied as sensing materials. Those novel phenomena, along with the simplicity in the preparation of aggregates, make the system promising in addressing related theoretical problems and practical applications.  相似文献   

18.
The phase behavior of a symmetric styrene-isoprene (SI) diblock copolymer in a styrene-selective solvent, diethylphthalate, was investigated by in situ small-angle X-ray scattering on isotropic and shear-oriented solutions and by rheology and birefringence. A remarkable new feature in this phase diagram is the coexistence of both body-centered cubic (bcc) and hexagonally close-packed (hcp) sphere phases, in a region between close-packed spheres (cps) and hexagonally packed cylinders (hex) over the concentration range phi approximately 0.33-0.45. By focusing on the transitions among these various ordered phases during heating and cooling cycles, we observed a strong hysteresis: supercooled cylinders persisted upon cooling. The stability of these supercooled cylinders is quite dependent on concentration, and for phi > or = 0.40, the supercooled cylinders do not revert to spheres even after quiescent annealing for 1 month. The spontaneous formation of spheres due to the dissociation of cylinders is kinetically hindered in this case, and the system is apparently not amenable to any pretransitional fluctuations of cylinders prior to the cylinder-to-sphere transition. This contrasts with the case of cylinders transforming to spheres upon heating in the melt. The application of large amplitude shear to the supercooled cylinders is effective in restoring the equilibrium sphere phases.  相似文献   

19.
An automated vapor pressure apparatus has been used to obtain measurements of the vapor pressure of aqueous solutions of fluorobenzene at temperatures of 15, 25, 35, and 45°C, and in the concentration range 0 to 0.011M. The results have been interpreted to infer the dimerization constant of fluorobenzene in very dilute aqueous solutions, equivalent to the second virial coefficient of interaction between fluorobenzene molecules. The hydrophobic association of fluorobenzene molecules is thermodynamically quite similar to that of benzene at comparable temperatures and concentrations. A dimerization constant of fluorobenzene of 0.56 M–1 at 30°C and an endothermic enthalpy of association equal to 3.9 kcal-mol–1 are calculated from the measurements.  相似文献   

20.
We investigate size segregation effects in a bidisperse concentrated suspension when slowly settling under gravity or when submitted to a centrifugal field. Experiments are carried out with PMMA spheres of two different mean diameters (190 and 25 microm) suspended in a hydrophobic index-matched fluid. Spatial repartitions of both small and large spheres and velocity fluctuations of particles are measured using fluorescently labeled PMMA spheres and a particle-image-velocimetry method. Large particles behave as hard spheres in purely hydrodynamic interactions, while small spheres interact through weakly attractive forces. For a small amount of small spheres among large ones, the suspension remains fluid during settling and the organization of the velocity field of particles into finite-sized structures also called "blobs" promotes size segregation. A larger proportion of weakly attractive small spheres in the bidisperse suspension causes a considerable slowdown of the settling process under gravity and the occurrence of a large-scale collective behavior together with a loss of size segregation. When centrifuging the gel-like bidisperse suspension, a shear-induced melting of the particle network induces a spectacular segregation of species. As a consequence, aging tests of soft yielding materials using centrifugation methods are not representative of the shelf-life stability of the products. A tentative model based on the competition between viscous stresses acting upon particles and adhesive stresses gives a correct estimate of the critical stationary acceleration for the destabilization of the particle network and the onset of size segregation in a gel-like suspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号