首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposites of montmorillonite (MMT) with poly(1‐naphthylamine) (PNA) is investigated for the first time by emulsion polymerization using three different oxidants. Polymerization of PNA was confirmed by Fourier transformation infrared (FT‐IR) as well as UV‐visible spectra. The in situ intercalative polymerization of PNA within MMT layers was confirmed by FT‐IR, X‐ray diffraction, conductivity; scanning electron microscopy (SEM) as well as transmission electron microscopy studies. X‐ray diffraction revealed intercalated as well as exfoliated structures of PNA/MMT nanocomposites, which were compared with the reported polyaniline‐MMT nanocomposites. It was found that the increase in the concentration of PNA in the interlayer galleries of MMT led to destruction of the layered clay structure resulting in exfoliation of the nanocomposite. Conductivity of the nanocomposites was found to be in the range of 10?3 to 10?2 S cm?1 which was found to be higher than the ones reported for polyaniline‐clay nanocomposites as well as PEOA‐OMMT nanocomposites at similar concentrations of intercalated species. The morphology of PNA/MMT nanocomposites was found to be governed by the nature of the oxidant used.  相似文献   

2.
Polycyanurate‐modified montmorrilonite (PCN‐MMT) nanocomposites were synthesized by polymerization of dicyanate ester of bisphenol A in the presence of MMT dispersed by ultrasound. Techniques of IR spectroscopy, WAXD, and TEM were applied to study polymerization kinetics and structure of the nanocomposites prepared, whereas their dynamics and thermal/mechanical properties over the ?30 to 420°C range were studied by using DSC, laser‐interferometric creep rate spectroscopy (CRS), and dielectric relaxation spectroscopy (DRS) techniques. It was shown that a small amount of MMT additive acts as a catalyst of polymerization and results in the formation of complicated intercalated/exfoliated structures, as well as strongly modifies the dynamics in the PCN network. Pronounced dynamic heterogeneity was observed for PCN/MMT nanocomposites. Along with the main PCN glass transition, two new glass transitions, at much higher and much lower temperatures, were revealed as a consequence of constrained dynamics in matrix interfacial nanolayers and due to incomplete local cross‐linking in the PCN matrix, respectively. In addition, increased sub‐T g mobility was observed in these nanocomposites. A two‐fold rise of modulus of elasticity as well as increasing thermal stability and arising microplasticity at low temperatures, promoting, obviously, improved crack resistance in a brittle PCN network, were found for the PCN‐MMT nanocomposites.  相似文献   

3.
Polymer nanocomposite electrolytes (PNCEs) of poly(ethylene oxide) and sodium perchlorate monohydrate complexes with montmorillonite (MMT) clay up to 20 wt.% MMT concentration of poly(ethylene oxide) (PEO) are synthesized by melt compounding technique at melting temperature of PEO (∼70 °C) and NaClO4 monohydrate (∼140 °C). Complex dielectric function, electric modulus, alternating current (ac) electrical conductivity, and impedance properties of these PNCEs films are investigated in the frequency range 20 Hz to 1 MHz at ambient temperature. The direct current conductivity of these materials was determined by fitting the frequency-dependent ac conductivity spectra to the Jonscher power law. The PNCEs films synthesized at melting temperature of NaClO4 monohydrate have conductivity values lower than that of synthesized at PEO melting temperature. The complex impedance plane plots of these PNCEs films have a semicircular arc in upper frequency region corresponding to the bulk material properties and are followed by a spike in the lower frequency range owing to the electrode polarization phenomena. Relaxation times of electrode polarization and ionic conduction relaxation processes are determined from the frequency values corresponding to peaks in loss tangent and electric modulus loss spectra, respectively. A correlation is observed between the ionic conductivity and dielectric relaxation processes in the investigated PNCEs materials of varying MMT clay concentration. The scaled ac conductivity spectra of these PNCEs materials also obey the ac universality law.  相似文献   

4.
In order to enhance the fine dispersion of hydrophilic sodium montmorillonite (Na‐MMT) in the matrix of hydrophobic rubber, the hydrophobic modification of Na‐MMT was carried out via an in situ method in the melt compounding process using the modifiers poly(ethylene glycol) monooleate or poly(ethylene glycol) diacrylate, both of which have a hydrophilic poly(ethylene glycol) (PEG) segment and a hydrophobic hydrocarbon segment. The X‐ray diffraction patterns showed that the interlayer distance of Na‐MMT was expanded by the intercalation of these modifiers. The morphology observed by scanning electron microscopy as well as the cure characteristics and tensile modulus showed that this organic modification effectively enhanced the fine dispersion of Na‐MMT in the rubber matrix.  相似文献   

5.
Montmorillonites modified by hydroxyethylhexadecyldimethyl ammonium bromine were used to prepare poly(?-caprolactone) (PCL)/montmorillonite (MMT) nanocomposites by in situ ring-opening polymerization of ?-caprolactone. Wide-angle X-ray diffraction (WAXD) analysis illustrated that an exfoliated structure of PCL/MMT nanocomposite was obtained. The nonisothermal crystallization kinetics of poly(?-caprolactone) and PCL/MMT nanocomposite was investigated by differential scanning calorimetry (DSC) at various cooling rates. The values of half-time of crystallization (t1/2) and crystallization rate constant (Zc) showed that crystallization rate increased with the increase of cooling rates for both PCL and PCL/MMT nanocomposite; however, the crystallization rate of PCL/MMT nanocomposite was faster than that of PCL at a given cooling rate.  相似文献   

6.
《Composite Interfaces》2013,20(2-3):285-297
This study dealt with the electrostrictive response of a polyurethane (PU)/clay nanocomposite film, which was a promising candidate for a material to be used in polymer actuators. The nanocomposites were produced by using three types of montmorillonites (MMTs) such as natural MMT (Cloisite®Na+), hydrophobic MMT (Cloisite® 20A), and hydrophilic MMT (Cloisite® 30B). The nanometer-scale silicate layers of organo-clay were completely exfoliated in PU for the cases of 1, 3 and 5 wt% PU/MMT nanocomposites as confirmed by wide X-ray diffraction (WAXD) profiles. Actuation tests indicated that the displacement of PU/MMT nanocomposite actuator was larger than pure PU actuator, caused by an increase in dielectric constant. Especially, PU/MMT nanocomposite actuator with Cloisite® 30B had the largest displacement and it became possible to operate at low voltage.  相似文献   

7.
In this study, mechanical properties of the linear low‐density polyethylene (LLDPE)/org‐clay nanocomposites prepared by melt processing were investigated. Aspect ratio (A f ) of the clay layers were estimated by using the Halpin‐Tsai (H‐T) micromechanical model based on the enhancement of the Young's modulus (E) with the clay loading (φ). Strength of interfacial interactions (τ and B parameters) between the clay layers and polymer chains were also quantified by two indirect modeling approaches based on the improvement in tensile strength (or yield stress) of the nanocomposite samples. Interfacial strength parameters, τ and B, were found as about 5 MPa and 17.3, respectively. The average value of A f was calculated as ~35 by the H‐T model. In the TEM study, it was observed that the nanocomposite samples showed mixed morphology that could be defined as some exfoliated layers, intercalated clay stacks, and two to three layered tactoids present together within the samples. An estimated A f value was also confirmed by the TEM study. On the other hand, it was also shown that the A f value is consistent with previously reported values calculated by the modeling of melt rheological data of samples obtained from dynamic oscillatory shear measurements.  相似文献   

8.
《Composite Interfaces》2013,20(7):589-603
Three-dimensional (3D) morphology of a polymer/clay nanocomposite, an organophilic montmorillonite (MMT) dispersed in poly(ethylene-co-vinylacetate) (EVA), was examined by transmission electron microtomography (TEMT). Using this technique, individual clay layers dispersed in the EVA matrix were clearly visualized. A volume fraction of the clay layers evaluated from the 3D reconstructed image agreed well with that calculated from the weight of the MMT component in the MMT/EVA system. The individual clay layers were digitally extracted by a newly developed 3D particle algorithm. A size distribution of the clay layers was directly obtained from the 3D reconstruction. Anisotropy of each clay layer was characterized by the determination of three semi-axes of an approximating ellipsoid with the same volume. One of the representative semi-axis of the ellipsoid was used to estimate average orientation of the MMT layers in the ultra-thin section used in the TEMT experiment. Thus, the combination of quantitative TEMT and 3D structural analysis is shown to be a powerful tool to investigate a relationship between the MMT distribution and a variety of physical properties of the nanocomposites.  相似文献   

9.
Presently, graphene incorporation is one of the most effective strategies to develop superior electrode materials for sodium‐ion batteries (SIBs). Herein, it is excitingly found that an incorporated graphene nanosheet in the preparation processes can not only completely protect all the Sb nanoparticles in an Sb/C composite from being inactivated, but also suppresses their growth to undesirable micrometer size. While there are still many exposed Sb particulates on the surface of pristine Sb/C microplates, the graphene‐incorporated Sb/C/G nanocomposite consists of uniform Sb nanoparticles of 20–50 nm, all of which have been protected by and wrapped in the mixed carbon network. When used as anode materials for SIBs, the Sb/C/G nanocomposite exhibits the best Na‐storage properties in terms of the highest reversible capacity (650 mA h g?1 at 0.025 A g?1), fastest Na‐storage ability (290 mA h g?1 at a high current density of 8 A g?1), and optimal cycling performance (no capacity decay after 200 cycles), in comparison to pristine Sb/C and pure Sb. It is further revealed that the much enhanced performance should originate from the improvement of Na‐storage kinetics and increase of electronic conductivity via comparing the electrochemical impedance spectra, and cyclic voltammetry profiles, as well as the polarization variation along with current densities.  相似文献   

10.
Abstract

Poly(ethylene glycol‐co‐cyclohexane‐1,4‐dimethanol terephthalate)(PETG)/clay nanocomposites were prepared via melt intercalation technique. The effects of concentration of the organic modifier in the clay on the properties of the nanocomposites were studied. Three clays modified using the same alkyl ammonium modifier, but differing in modifier concentration, are used for this purpose. The nanocomposites are characterized using wide‐angle x‐ray diffraction for their structure. Dynamic mechanical analysis of these nanocomposites is also studied to investigate their viscoelastic behaviors. The x‐ray diffraction study shows an increase in the interlayer spacing of organically modified clays as compared to that of Na+ clay. The extent of increase in the interlayer spacing is dependent on the concentration of organic modifier used to modify the montmorillonite. The presence of well‐defined diffraction peaks and the observed increase in the interlayer spacing in the nanocomposites imply the formation of an intercalated hybrid. Dynamic mechanical properties show an increase in the storage modulus of the nanocomposite over the entire temperature range studied, as compared to the pristine polymer. Investigation of the rubbery plateau modulus confirms the reinforcing effect of organically modified clay. The observed enhancement in the modulus was greater for the clay with the lowest content of the organic modifier. These results indicate that in nanocomposites, apart from the compatibility of the organic modifier with the polymer, its concentration in the interlayer also plays a critical role in the structure development and thus in the enhancement of the properties. The nanocomposites showed reduced damping, which was governed by the modifier concentration in the clay.  相似文献   

11.
Ultrasonically initiated miniemulsion polymerization of styrene in the presence of Fe3O4 nanoparticles was successfully employed to prepare polystyrene (PS)/Fe3O4 magnetic emulsion and nanocomposite. The effects of Fe3O4 nanoparticles on miniemulsion polymerization process, the structure, morphology and properties of PS/Fe3O4 nanocomposite were investigated. The increase in the amount of Fe3O4 nanoparticles drastically increases the polymerization rate due to that Fe3O4 nanoparticles increase the number of radicals and the cavitation bubbles. Polymerization kinetics of ultrasonically initiated miniemulsion polymerization is similar to that of conventional miniemulsion polymerization. PS/Fe3O4 magnetic emulsion consists of two types of particles: latex particles with Fe3O4 nanoparticles and latex particles with no encapsulated Fe3O4 nanoparticles. Fe3O4 nanoparticles lower the molecular weight of PS and broaden the molecular weight and particle size distribution. Thermal stability of PS/Fe3O4 nanocomposite increases with the increase in Fe3O4 content. PS/Fe3O4 emulsion and nanocomposite exhibit magnetic properties. PS/Fe3O4 magnetic particles can be separated from the magnetic emulsion by an external magnetic field and redispersed into the emulsion with agitation.  相似文献   

12.
Abstract

Nano‐TiO2 doped polystyrene (PS) materials (TiO2d‐PS) used for inertial confinement fusion (ICF) targets were prepared by means of melt blending. The effect of the pretreatment process, including coupling agents and ultrasonic dispersion on nano‐TiO2, was studied. Tensile tests were conducted to evaluate the mechanical properties of the TiO2d‐PS materials. Scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) was used to characterize the degree of dispersion of nano‐TiO2 in the PS matrix. Transmission electron microscopy (TEM) and dynamic contact angle (DCA) measurements were introduced to demonstrate the surface state of untreated and pretreated nano‐TiO2. The results showed that coupling agents improved the interfacial adhesion between the PS matrix and dopants; ultrasonic dispersion contributed to the increase in the tensile properties of the TiO2d‐PS materials. The dispersion stability of nano‐TiO2 powder and the stability of the TiO2d‐PS materials were significantly enhanced through pretreatment, which was supported by the increase in the DCA when the nano‐TiO2 was pretreated by the coupling agent. The results of SEM and EDS indicated that the nano‐TiO2 dispersed homogeneously in the PS matrix. The pretreatment process is an effective way to break the aggregation of nano‐TiO2, which was confirmed by TEM results. Melt blending is a feasible method to prepare PS doped high Z element ICF target materials.  相似文献   

13.
A facile method using polystyrene‐b‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) micelles is demonstrated to synthesize N/FeN4‐doped hollow carbon nanospheres (N/FeN4‐CHNS) with high electrocatalytic activity for oxygen reduction reactions (ORRs). Uniform spherical micelles with PS core and P4VP shell are prepared by exposing PS‐b‐P4VP in a mixture of ethanol/tetrahydrofuran. Pyridinic N in shell cooperates with Fe3+ to induce an in situ polymerization of pyrrole. Tuning molecular composition of PS‐b‐P4VP can form hollow carbon spheres with controlled size down to sub‐100 nm that remains challenge using traditional hard template strategies. N/FeN4‐CHNS possesses a series of desirable properties as electrode materials, including easy fabrication, high reproducibility, large surface area, and highly accessible porous surface. This electrocatalyst exhibits excellent ORR activity (onset potential of 0.976 V vs reversible hydrogen electrode (RHE) and half‐wave potential of 0.852 V vs RHE), higher than that of commercial Pt/C (20 wt%) in an alkaline media, and shows a good activity in an acidic media as well. In addition to its higher stability and methanol tolerance than Pt/C in both alkaline and acidic electrolytes, highly competitive single cell performance is achieved in a proton exchange membrane fuel cell. This work provides a general approach to preparing functionalized small hollow nanospheres based on self‐assembly of block copolymers.  相似文献   

14.
《Composite Interfaces》2013,20(2-3):217-222
A series of HDPE/MMT nanocomposites with different proportions of compatibilizers, PE-g-MAH (AC573A and 5TP409/E) were prepared in a counter rotating twin screw extruder. The effect of nanoclay loading, compatibilizer type and amount was examined. The work was carried out using a specific grade of HDPE recommended for blow-moulding applications and modification of the same by blending with selected polymer and nanofiller to achieve the desired properties. The composition containing higher percentage of nanoclay showed improvement in mechanical properties. About 17% in tensile modulus and about 20% increase in flexural modulus were observed with high-viscous compatibilizer. The dispersion behaviour of nanoclay in PE matrix was studied using X-ray diffraction and transmission electron microscopy. It was clear from WXRD that in all nanocomposite samples, the peaks were shifted to lower 2 values implying that the d-spacing increases and that intercalation occurred. Low molecular weight compatibilizer PE-g-MA resulted in better intercalation than high molecular weight compatibilizer. It was observed that in the case of 5% AC573A loading, there was slight decrease in d-spacing value which indicated that some exfoliation also occurred in nanocomposite. Nanocomposite containing PE-g-MAH is higher concentration gives better dispersion than at low concentration. TEM results show that PE-g-MAH (AC573A) at 5% loading is more efficient as compatibilizer (not many aggregates seen) than other compositions.  相似文献   

15.
Abstract

Reaction‐induced, phase separation has been studied in polymer blends. A model crystalline‐amorphous system consisted of semicrystalline polyoxyethylene (POE) dissolved in the monomer styrene, which was used as a reactive solvent to ease processing. When the styrene was polymerized to polystyrene (PS) in the mold, phase separation and phase inversion are induced, and a polymer blend was formed. Polyoxyethylene was selected with a molar mass, M n  = 8578 g mol?1 and a polydispersity of 1.19, as determined by using gel permeation chromatography. The polymerization of styrene was initiated by using 1 wt% benzoin methyl ether and 0.2 wt% 2,2′‐azobisisobutyronitrile under ultraviolet light. The polymerization kinetics were determined by monitoring the reduction in the intensity of the C?C stretching vibration band at 1631 cm?1 in the Raman spectrum of styrene. The onset times for the liquid–solid (L–S) phase separation and crystallization of POE from styrene/PS were observed by using simultaneous small‐angle x‐ray scattering (SAXS) and wide‐angle x‐ray scattering. Onset times for L–S phase separation determined from the SAXS data were combined with the styrene polymerization kinetics to plot the L–S phase separation data onto a ternary phase diagram for the reactive system POE/styrene/PS at 45°C and 50°C.  相似文献   

16.
Solid polymer nanocomposite electrolytes (SPNEs) consisted of poly(methyl methacrylate) (PMMA) and lithium perchlorate (LiClO4) of molar ratio C=O:Li+=4:1 with varying concentration of montmorillonite (MMT) clay as nanofiller have been prepared by classical solution casting and high intensity ultrasonic assisted solution casting methods. The dielectric/electrical dispersion behaviour of these electrolytes was studied by dielectric relaxation spectroscopy at ambient temperature. The dielectric loss tangent and electric modulus spectra have been analyzed for relaxation processes corresponding to the side groups rotation and the segmental motion of PMMA chain, which confirm their fluctuating behaviour with the sample preparation methods and also with change of MMT concentration. The feasibility of these relaxation fluctuations has been explained using a transient complex structural model based on Lewis acid–base interactions. The low permittivity and moderate dc ionic conductivity at ambient temperature suggest the suitability of these electrolytes in fabrication of ion conducting electrochromic devices and lithium ion batteries. The amorphous behaviour and the exfoliated/intercalated MMT structures of these nanocomposite electrolytes were confirmed by X-ray diffraction measurements.  相似文献   

17.
In this research, nanocomposite hydrogels were prepared by cross‐linking of partially hydrolyzed polyacrylamide/sodium montmorillonite aqueous solutions with chromium triacetate. The gelation process and influence of nanoclay content and salt concentration on swelling behavior were investigated. Study of gelation behavior using dynamic rheometry method showed that increasing the nanoclay content decreases the storage modulus, due to the partial adsorption of polymer chains onto the clay surface and ionic interaction between negative layers of sodium montmorillonite and Cr.3+ By increasing the cross‐linker concentration of the gelation system, the viscous energy dissipation properties of the nanocomposite gel decreases. Swelling ratio of the nanocomposite gels in distilled water decreased as the concentration of the nanoclay increased. However, nanocomposite gels showed lower salt sensitivity in electrolyte media compared with unfilled gels.  相似文献   

18.
We have investigated the spatial self-phase modulation (SSPM) phenomena in a clay suspension containing silver nanoparticles. Silver nanoparticles (Ag-NPs) were synthesized in the space of lamellar structure of montmorillonite (MMT) by using chemical reducing agent. The UV-vis spectra of the obtained Ag-NPs showed that the intensity surface plasmon resonance (SPR) peaks increase with increasing in concentration of AgNO3. The results from Ag-NPs UV-vis spectra were in good agreement with the structure studies performed by TEM. The SSPM phenomena manifestation of the non-linear optical property appeared only when MMT suspension filled with Ag-NPs as shown in the existence of far-field pattern. This property increased with the increase of Ag-NPs concentration and limited to small range.  相似文献   

19.
Composite materials consisting of poly(butylene succinate) (PBS) and montmorillonite (MMT), modified to various extents using trihexyltetradecylphosphonium chloride (THTDP) cations, were prepared using a simple melt intercalation technique. The surfactant contents were varied, i.e. 0.4, 0.6, 0.8, 1.0, and 1.2 times the cation exchange capacity (CEC) of the MMT. The intercalation of the surfactant molecules into MMT layers, confirmed by the increase in interlayer spacing and significant changes in the morphology of the modified MMT, facilitated the dispersion of the clay in the PBS matrix. The properties of the PBS-based composites were changed with increasing surfactant content. The melting and crystallization temperatures increased and the degree of crystallinity (χc) decreased. The storage modulus was significantly enhanced below the glass transition temperature (Tg), and Tg shifted to a higher temperature, with a maximum at a surfactant loading of 0.6 CEC. The mechanical properties, including tensile strength, flexural strength, flexural modulus and impact strength, increased and then decreased with surfactant loading, with the maximum observed also at a surfactant loading of 0.6 CEC. In conclusion, an ideal balance between thermal and mechanical properties can be obtained at a surfactant quantity equivalent to 0.6 times the clay CEC. Moreover, all the composites exhibited obvious improvement in thermal and mechanical properties as compared to those of neat PBS.  相似文献   

20.
Polymer nanocomposite electrolyte (PNCE) films composed of poly(ethylene oxide) (PEO), lithium salt ( \textLiX;  \textX = ClO4 - ,  BF4 - ,  CF3SO3 - {\text{LiX}};\;{\text{X}} = ClO_4^{ - },\;BF_4^{ - },\;C{F_3}SO_3^{ - } ) and montmorillonite (MMT) clay as nanofiller were prepared by melt-compounded hot-pressed technique at 70 °C under 3 tons of pressure. The ionic conductivity and relaxation behaviour of the films were investigated by dielectric relaxation spectroscopy in the frequency range of 20 Hz to 1 MHz at ambient temperature. The results revealed that the ionic conductivity of the PNCE films having 20:1 stoichiometric ratio of ethylene oxide monomer units to the lithium cation are governed by the size of different anions and the dissociation constant of salt, and also MMT concentration. It was found that PEO–LiBF4 film has comparative high dc ionic conductivity, whereas both the LiBF4 and LiClO4 containing PNCE films exhibit anomalous conductivity behaviour with varying MMT concentration. The PEO–LiCF3SO3 film has two orders of magnitude low value of dc ionic conductivity as compared to that of the other salts electrolyte films, but its conductivity enhances by one order of magnitude when 2 wt.% MMT is added as filler. A correlation between the values of ionic conductivity, conductivity relaxation time and the real part of permittivity at 1 MHz were found and the same was discussed in relation to the transient ion-dipolar type cross-linked structural behaviour of the polymeric nanocomposite electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号