首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
A detailed kinetic study of the γ-ray-induced surface grafting of methyl acrylate (MA) onto polyethylene (PE) has been investigated by using quartz helix microbalances. Under typical graft conditions, the grafting rate increases, levels off, and then accelerates with irradiation time; i.e., the typical growth process of the surface grafting consists of an initial stage having an increasing rate of grafting, an intermediate stage having a constant rate, and an advanced stage having an accelerated rate. A homopolymer layer (consisting only of an MA component) begins to be formed on the inner graft copolymer layer (consisting both of MA and PE components) at the transition zone in grafting rate after a duration of a constant rate of grafting. Therefore, the increasing rate in increasing rate in the intial stage of grafting reflects the graft copolymerization in the graft copolymer layer (inside the PE sheet), and the increasing rate in the advanced stage reflects the growth of the homopolymer layer. Under grafting reflects the graft tage reflects the growth of the homopolymer layer. Under grafting conditions by which the homolymer layer is not formed throughout the whole grafting process, the surface grafting remains remains in the initial stage. On the order hand, under grafting conditions by which the homopolymer layer begins to be formed from an early stage of grafting, the surface grafting proceeds rapidly from the initial stage to the advanced stage and thus skips the intermediate stage.  相似文献   

2.
氯化原位接枝反应制备羟基官能化CPE——结构表征   总被引:1,自引:0,他引:1  
以高密度聚乙烯(HDPE)为基体,采用气-固氯化原位接枝反应合成了以氯化聚乙烯(CPE)为骨架聚合物、丙烯酸-2羟基乙酯(HEA)为支链的接枝共聚物.反应中不需要加入任何引发剂,以氯自由基引发接枝及氯代反应,得到羟基官能化CPE接枝聚合物.并用1H-NMR,FT-IR,GPC及X-射线衍射等对接枝共聚物的结构进行了表征.  相似文献   

3.
Mutual irradiation of polyethylene (PE) in methyl acrylate vapor easily forms a poly(methyl acrylate) (PMA) homopolymer layer on the inner graft copolymer layer consisting of both PE and PMA components as a result of the rapidly increasing surface-graft composition. This growth process of surface grafting has been found to provide some specific kinetic features different from those in other surface-grafting systems. With formation of the surface homopolymer layer, low- and highdensity PE sheets give the same grafting rate, whereas both sheets give different rates in grafting stages or conditions in which the homopolymer layer is not formed. This result indicates that most monomers, penetrating across the surface, are entrapped or consumed in the surface homopolymer layer; accordingly the rate becomes independent of the type of PE sheets that have significantly different diffusion coefficients. The thickness of the inner graft copolymer layer, which is kept constant after homopolymer-layer formation, increases with decreasing dose rate and with increasing monomer vapor pressure and temperature. This behavior can be qualitatively explained according to an equation for the initial steady-state grafting depth.  相似文献   

4.
Vapor-phase mutual grafting of methyl acrylate (MA) onto polyethylene (PE) at high dose rates from an electron accelerator yields the same surface graft structure as does the grafting at low dose rates from 60Co sources; i.e., a homopolymer layer (consisting of only MA component) is easily formed on the inner graft copolymer layer (consisting of both MA and PE components) as a result of the continuously increasing surface graft composition. To produce the surface layer, 4-MeV electron irradiation with a linear electron accelerator requires only less than 3 min of irradiation time at dose rates of more than 2 Mrad/min, whereas γ irradiation with a 60Co source requires at least 1 hr at dose rates of less than 2 × 103 rad/min. The rate of monomer consumption (or polymerization) in the surface homopolymer layer shows no dependence of irradiation time and a positive dependence of dose rate. It has been suggested that this kinetic feature at the high dose rates shows some contribution of vapor-phase homopolymerization and subsequent deposition (onto the grafting surface) followed by recombination with the grafted side chain radicals, although secondary graft copolymerization from the grafted chain radicals is still the principal process for the growth of the surface homopolymer layer.  相似文献   

5.
The present study is aimed to investigate the degree of crystallinity of poly(3-hydroxybutyrate) P(3HB) grafted with poly(2-aminoethyl methacrylate hydrochloride) (PAEMA) chains using WAXS, micro Raman, and FTIR spectroscopy. The samples were obtained by radiation induced graft polymerization of the monomer in the substrate using different solvents for comparison. The results of crystallinity are consistent with those obtained of lower crystallinity in grafting copolymer relative to the substrate P(3HB). The low crystallinity is directly related to the increase of the degree of grafting, meaning that although the P(3HB) amorphous region is grafted, the crystalline zone is also affected in some extent by the grafting process and the environment of the new molecule. Three different methods were surveyed to determine the variation of crystallinity degree with the grafting degree. It is shown that all methods provide linear relationships between these variables, but WAXS method was found more acceptable than the others (FTIR and Raman). A detailed characterization of the vibrational bands characteristic of amorphous and helical crystalline structure of the grafting copolymers are also highlighted.  相似文献   

6.
Methyl α,β,β-trifluoroacrylate (MTFA) was grafted onto polyethylene (PE) film and fluorine-containing films to make ion-exchange membranes. In the case of PE the grafting yield was not influenced by the presence of trifluorotrichloroethane (Freon 113) in the reaction mixture, while the presence of methanol decreased the grafting yield. The transversal distribution of graft chains in the film observed by electron-probe x-ray microanalysis showed that when the grafting was carried out in the presence of Freon the amount of graft chains in the central part of PE film was much larger than that at the film surface and that the grafts obtained in the absence of Freon were located mainly at the film surface. The electric resistance of the graft PE film obtained in the presence of Freon decreased more than that of the one obtained in the absence of Freon. The weight loss of the graft films in H2O2 solution was negligibly small.  相似文献   

7.
The graft polymerization of styrene onto high-density polyethylene films was carried out by γ-irradiation in the vapor phase. Two methods were used for grafting in these experiments: a preirradiation method and a simultaneous irradiation method. The effects of these grafting methods on the reaction mechanism of grafting and on the properties of the grafted samples were investigated. The amounts of styrene homopolymer in the grafted samples is under 2% in the case of the preirradiation method and above 10% in the case of the simultaneous irradiation method. The activation energies were calculated to be 18 kcal/mole for grafting in the preirradiation method and 15 kcal/mole for weight increase of polyethylene films in styrene vapor. The difference in the dimensional expansion between in the direction of stretching and the direction prependicular to it is smaller with preirradiation grafting than with grafting by the simultaneous irradiation method. Differential thermal analysis of the grafted films shows an endothermic peak due thermal decomposition which decreases gradually from 450°C to 415°C with increase in degree of grafting from 30 to 60%. The lowering of this peak temperature appears at a lower degree of grafting when the preirradiation method is used. On the basis of these results, it is concluded that the reaction rate of radiation-induced grafting in the vapor phase depends closely upon the processes of adsorption, dissolution, and diffusion of styrene monomer in polyethylene films; in the case of simultaneous irradiation method, the reaction proceeds comparatively uniformly in the amorphous region, while in the case of the preirradiation method, the reaction proceeds mainly at the boundary of the crystalline and amorphous regions.  相似文献   

8.
A novel cellulose acetate-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer was prepared via free radical polymerization for the first time. The chemical structure of the graft copolymer was confirmed using FT-IR, 1H NMR and EDX. The TGA and DSC investigated the thermal changes. Factors affecting the grafting process were studied and various grafting characteristic parameters such as grafting efficiency (%), grafting yield (%) and add-on value (%) were determined. Flexible membranes based on different graft copolymer compositions were fabricated by simple solution casting. Physicochemical properties including ion exchange capability (IEC), water uptake (WU) and proton conductivity (σ) were evaluated. These membranes demonstrated higher IEC, WU and conductivity than the pristine CA. The maximum proton conductivity of the CA-g-poly (2-acrylamido-2-methylpropane sulfonic acid-co- methyl methacrylate) copolymer membrane (68%; Add-on %) was found to be 6.44 × 10−3 S/cm compared with 0.035 × 10−3 S/cm of the pristine CA. Thus, the appropriate graft copolymer composition will allow fine-tuning of the physical characteristics and led to several potential applications, such as polyelectrolyte fuel cells membranes or biodiesel production.  相似文献   

9.
Graft copolymerization of methyl methacrylate onto lignosulfonate in aqueous medium was investigated. It was found that the H2O2–Fe(II) redox system is very effective for the grafting (Ea = 4.4 kcal/mole). The H2O2/Fe2+ ratio was the most important factor in the graft copolymerization and characteristics of the resultant graft copolymers. In most cases, polymerization for 100 min at 30°C was enough to obtain 80% conversion and 50–60% grafting efficiency. The resultant polymer mixture was subjected to extraction alternately with acetone and water, and the graft copolymer was isolated free from homopolymer and unreacted lignosulfonate. With increasing H2O2/Fe2+ ratio, the grafting ratio showed a maximum at 4, whereas the yield of graft copolymer and number of poly(methyl methacrylate) branches for every building unit of lignosulfonate increased up to a ratio of 4, both values, however, remaining constant above 4. The graft copolymer obtained for the case H2O2/Fe2+ = 4 consisted of one part of lignosulfonate and five parts of poly(methyl methacrylate). The number of branches in the graft copolymer was 6 × 10?3/OCH3 or one every 167 guaiacyl nuclei.  相似文献   

10.
张力  陈文森 《应用化学》2000,17(4):424-0
接枝共聚合;丙烯酸-2-乙基己酯改性玉米淀粉  相似文献   

11.
选用聚乙烯 丙烯酸 (EAA)为接枝母体 ,首先摸索出 2 乙基 2 唑啉阳离子开环聚合的规律 ,得到高转化率端基为活性离子的聚 ( 2 乙基 2 唑啉 ) (PEOX) ,再与EAA羟基侧基进行接枝反应 ,考察了开环聚合条件及接枝反应条件对接枝率的影响 ,在一定的条件下得到了接枝率 >2 5%的聚乙烯 丙烯酸与聚 ( 2 乙基 2 唑啉 )的接枝共聚物 (EAA g PEOX) .该接枝物用于聚对苯二甲酸丁二醇酯 /聚丙烯 (PBT/PP)共混体系中作相容剂 ,可提高两者的相容性 .  相似文献   

12.
选用聚乙烯-丙烯酸(EAA)为接枝母体,首先摸索出2-乙基-2-恶唑啉阳离子开环聚合的规律,得到高转化率端基为活性翁离子的聚(2-乙基-2-恶唑啉)(PEOX),再与EAA羟基侧基进行接枝反应,考察了开环聚合条件及接枝反应条件对接枝率的影响,在一定的条件下得到了接枝率〉25%的聚乙烯-丙烯酸与聚(2-乙基-2-恶唑啉)的接枝共聚物(EAA-g-PEOX)。该接枝物用于聚对苯二甲酸丁醇酯/聚丙烯(P  相似文献   

13.
Thermal reactions of the binary alkali salts of poly(carboxylic acid)–brominated carboxylic acid such as sodium or potassium poly(4-vinylbenzoate)-2-bromopropanoate [Na or K (PVBA-2-BPA)] in bulk were investigated. A methanol solution of binary acids was prepared by fixing the molar ratio of the repeating unit of polymeric acid to the fraction of brominated carboxylic acid. The binary salts were prepared by the neutralization of the binary acid solution. The product of the thermal reaction followed by esterification was identified as a graft copolymer containing PVBA in the main chain and polylactic acid in the side chain. The reaction of 1/15 K (PVBA-2-BPA) at 120 °C for 2 h yielded the highest percentage of grafting (300%). The grafting proceeded gradually for the initial 2 h and then somewhat. Reactivity of the K salt was higher than that of the corresponding Na salt. The thermal reaction of 1/10 K [polymethacrylate-2-BPA (PMA-2-BPA)] at 120 °C for 2 h also yielded a graft copolymer, and the percentage of grafting was 300%. However, reaction temperatures higher than 120 °C caused homopolycondensation of K 2-BPA prior to grafting, and homopolycondensation occurred prior to grafting in the reaction with Na (PMA-2-BPA). © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1877–1885, 2001  相似文献   

14.
淀粉/DL-丙交酯接枝共聚物的合成和生物降解性能研究   总被引:23,自引:0,他引:23  
以淀粉为接枝骨架 ,DL 丙交酯为接枝单体 ,在无水LiCl存在下 ,合成了淀粉 /DL 丙交酯接枝共聚物 .研究了接枝反应的投料比、反应时间、反应温度对单体转化率 (C % )、接枝率 (G % )和接枝效率 (GE % )的影响 .当DL 丙交酯与淀粉结构单元的摩尔比为 10∶1,反应温度为 80~ 85℃ ,反应时间为 4h ,C % ,G %和GE %可分别达到 37 3 %、179 7%和 6 8 0 % .用差示扫描量热 (DSC)分析仪、红外光谱仪和X 射线衍射仪对合成的接枝共聚物进行了表征 ,结果表明 ,淀粉和DL 丙交酯反应生成了淀粉 /DL 丙交酯接枝共聚物 .防水实验结果表明 ,该产物在给定条件下可使纸板的吸水率由 41 1%降低到 1 0 % .降解实验表明该接枝共聚物能够被酸、碱及微生物完全降解  相似文献   

15.
聚氯乙烯-g-聚甲基丙烯酸-2-羟乙酯共聚物的合成和表征   总被引:4,自引:0,他引:4  
聚氯乙烯 (PVC)是常用医用高分子材料之一 ,可以制作储血袋、导液管、人工尿道等 .PVC亲水性差 ,影响其生物相容性 .采用亲水性单体与PVC接枝共聚是提高PVC亲水性的重要方法[1] .Krishnan等[2 ] 对Co60 辐照下PVC接枝N 乙烯基吡咯烷酮进行了研究 .Singh等[3~ 5] 采用辐照引发甲基丙烯酸在PVC薄膜的接枝反应 ,对接枝动力学、接枝后薄膜表面形态、溶胀和抗凝血性等进行了研究 .Goldberg等[6] 采用辐照引发甲基丙烯酸2 羟乙酯 (HEMA)在PVC薄膜上的接枝 .Lee等[7]采用溶液接枝共聚制备了…  相似文献   

16.
Polystyrene (PS) and polyethylene (PE) are two major components of household plastic waste whose blends are immiscible. Recycling them together is an attractive option that requires a compatibilization process to improve the blend mechanical properties. If a PE/PS copolymer is added or formed in situ, it may act as compatibilizer. The structure and molecular properties of this copolymer are key factors to assure its effectivity as a compatibilizer. In this work, we study the graft copolymerization reaction between polystyrene and polyethylene using the catalytic system composed of AlCl3 and styrene. We develop a model of this process which considers that PE/PS grafting and PS degradation occur simultaneously. We propose a kinetic mechanism for the whole process and apply the method of moments to solve the mass balance equations. The model is able to calculate average molecular weights as well as the amount of grafted PS. It accurately describes the available experimental data, constituting a valuable tool for simulation and optimization purposes.  相似文献   

17.
Poly(cis‐cyclooctene) is synthesized via ring‐opening metathesis polymerization in the presence of a chain‐transfer agent and quantitatively hydrobrominated. Subsequent graft polymerization of tert‐butyl acrylate (tBA) via Cu‐catalyzed atom transfer radical polymerization (ATRP) from the non‐activated secondary alkyl bromide moieties finally results in PE‐g‐PtBA copolymer brushes. By varying the reaction conditions, a series of well‐defined graft copolymers with different graft densities and graft lengths are prepared. The maximum extent of grafting in terms of bromoalkyl groups involved is approximately 80 mol%. DSC measurements on the obtained graft copolymers reveal a decrease in Tm with increasing grafting density.  相似文献   

18.
The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO2+2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO2+2. The complex structure of polyethylene with three functional groups and UO2+2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy.  相似文献   

19.
A microphase‐separated, amphiphilic graft copolymer consisting of a poly (vinyl chloride) (PVC) backbone and poly(oxyethylene methacrylate) (POEM) side chains, (PVC‐g‐POEM at 62:38 wt %) was synthesized via atom transfer radical polymerization (ATRP). Nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM) clearly revealed that the “grafting from” method using ATRP was successful and that the graft copolymer molecularly self‐assembled into discrete nanophase domains of continuous PVC and isolated POEM regions. The self‐assembled graft copolymer film was used to template the growth of silver nanoparticles in solid state by introducing a AgCF3SO3 precursor and a UV irradiation process. The in situ formation of silver nanoparticles in the graft copolymer template film was confirmed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering. FTIR spectroscopy and X‐ray photoelectron spectroscopy also demonstrated the selective incorporation and in situ formation of silver nanoparticles within the hydrophilic POEM domains, presumably due to strong interactions between the silver and the ether oxygen in POEM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3911–3918, 2008  相似文献   

20.
Radiation-induced graft polymerization of acrylamide (AAm) onto low-density polyethylene(LDPE) film has been investigated. The appropriate reaction conditions at which the graft polymerization was carried out successfully were selected. It was observed that the grafting process was enhanced remarkably by using distilled water as diluent. In this grafting system ammonium ferrous sulphate (Mohr's salt) was used as inhibitor to minimize the homopolymerization of AAm and the suitable concentration of such inhibitor was found to be 3 wt %. The dependence of the grafting rate on the monomer concentration was calculated to be 2.9 order, regardless of the irradiation atmosphere (N2 gas or under vacuum). When the radiation grafting process was carried out under vacuum, higher degrees of grafting were obtained as compared to those in nitrogen gas or in air atmosphere. Network structure was formed in the graft copolymer and the gel formation was determined in the p-xylene-extracted grafted films. Results showed good evidence that the grafting process takes place by the front mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号