首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
This work presents a study of the thermal decomposition of commercial vegetable oils and of some of their thermal properties by termogravimetry (TG), derivative termogravimetry (DTG) and by differential thermal analysis (DTA). Canola, sunflower, corn, olive and soybean oils were studied. A simultaneous SDT 2960 TG/DTA from TA Instruments was used, with a heating rate of 10 K min-1 from 30 to 700°C. A flow of 100 mL min-1 of air as the purge gas was used in order to burnout the oils during analysis to estimate their heat of combustion. From the extrapolated decomposition onset temperatures obtained from TG curves, it can be seen that corn oil presents the highest thermal stability (306°C), followed by the sunflower one (304°C). Olive oil presents the lowest one (288°C). The heat of combustion of each oil was estimated from DTA curves, showing the highest value for the olive oil. Except for corn oil, which presents a significantly different thermal decomposition behavior than the other oils, a perfect linear correlation is observed, with negative slope, between the heat of combustion of an oil and its respective extrapolated onset temperature of decomposition in air. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
用差热分析(DTA)研究了a-三氢化铝在氦气流下的热分解动力学。建立了A-E方程中动力学参数与DTA曲线的特征温度之间的关系式, 用序贯法对竞争模型进行最佳判别和参数估算, 确定a-三氢化铝的热分解曲线可用方程[-In(1-x)]~(1/4)=r_0e~(-E/RT_t)来描述, 表观活化能E为121.4±6.3 kJmoL~(-1), 指前因子r_0为8.1×10~(11±1)(sec-1), 模型计算结果与实验结果吻合较好。  相似文献   

3.
The syntheses and thermal stability properties of a series of amino and nitro substituted copperporphyrins are described. The thermal decomposition temperatures of the porphyrins were determined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The on-set thermal decomposition temperatures of the unsymmetrical porphyrins were found to be high in the range of 350 – 405 °C (DSC), 374 – 441 (TGA in air), 395 – 411 °C (TGA under nitrogen atmosphere), and 410 – 424 °C (DTA in air). Substituent dependent thermal stability trends were also studied. The trend is variable depending on the thermal analysis technique utilized. Possible reasons for such variation are discussed. These porphyrins are thermally robust even in the melamine-based sol-gel matrix. Containing 20% by weight of the substituted unsymmetrical copperporphyrin, melamine-based sol-gel showed no indication of decomposition until ?400 °C.  相似文献   

4.
The behaviour in dilute solution of head-to-head (H-H) polypropylenes, covering the range Mn = 0.22 to 4.19 × 104, has been studied in cyclohexane as solvent at 303 K. The data could be represented by two distinct Mark-Houwink equations describing the low and the high molecular weight regions. The unperturbed dimensions of (H-H) polypropylenes were found to be less than those for conventional atactic polypropylene in agreement with theoretical predictions. The theta temperature for (H-H) polypropylene in isoamylacetate was found to be 316 K. At this temperature the characteristic ratio was estimated to be 4.5 compared with 6.4 for atactic and syndiotactic polypropylene. The conclusion is that (H-H) placements in polypropylene increase the flexibility of the chain.  相似文献   

5.
~(13)C核磁共振研究氯化无规聚丙烯的结构   总被引:7,自引:0,他引:7  
用核磁共振方法(~(13)C-NMR)研究了一系列氯化无规聚丙烯的结构。在0—52.84%(wt)的氯化度范围内,主要为单氯取代,二氯取代很少。伯、仲、叔三种氢的相对氯化活性为R(CH)>R(CH_2)>R(CH_3),并乒表明氯化反应比较均匀地发生在无规聚丙烯分子链上。影响聚丙烯氯化反应的结构因素主要为C—H键的离解能,大分子自由基稳定性和大分子链构型等。  相似文献   

6.
Wood has been treated with guanidine phosphate, guanidine nitrate, guanidine carbonate and guanidine chloride to impart flame retardancy. The samples were subjected to differential thermal analysis (DTA) and thermogravimetry (TG) from ambient temperature to 800°C in air to study their thermal behaviors. From the resulting data, kinetic parameters for different stages of thermal degradation were obtained following the method of Broido. For the decomposition of wood and flame retardant wood, the activation energy was found to decrease from 116 to 54 kJ mol–1; the char yield was found to increase from 5.6 to 34.9%, LOI from 18 to 41.5, which indicated that the flame retardancy of treated wood was improved. Effects of the different compounds on the degradation and flammability of wood have also been proposed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
对LiNd(PO3)4晶体分别在N2气和空气下进行了TG和DTA热分析研究,给出TG和DTA曲线,讨论了LNP晶体在N2气和空气下不同的热分解机理.得到分解产物分别为Nd4(P2O7)3和NdP2O7.  相似文献   

8.
The thermal decomposition in air of several complexes of chromium(III) with imidazole,N-methylimidazole and 2-methylimidazole has been studied with the aid of differential thermal analysis (DTA), thermogravimetry (TG) and derivative thermogravimetry (DTG) in the temperature range 25–600°C. Although the final process of the decomposition gives Cr2O3, there are interesting differences in the complete process of decomposition. The reasons for these differences appear to be related to the trans-effect and to the presence in the imidazole complexes of hydrogen bonds. Enthalpies of the several decomposition reactions have been determined by differential thermal analysis.  相似文献   

9.
The thermal oxidation of atactic polypropylene on CuO0.67 surfaces in air was studied using IR reflection-absorption spectroscopy. Degradative losses of primary, secondary, and tertiary alkyl hydrogens were observed. At 60 and 73°C, carboxylic acids are the primary degradation products, while at 85 and 100°C, copper carboxylate formation predominates and CuO0.67 is decomposed. The distinct change in the oxidative mechanisms between 73 and 85°C apparently is related to an irreversible thermal transition in the atactic polypropylene films, which may favor carboxylate production by increasing the permeability of the films to oxygen and water vapor.  相似文献   

10.
Simultaneous thermogravimetry (TG) and differential thermal analysis (DTA) techniques were used for the characterization the thermal degradation of loratadine, ethyl-4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidine)-1-piperidinecarboxylate. TG analysis revealed that the thermal decomposition occurs in one step in the 200–400°C range in nitrogen atmosphere. DTA and DSC curves showed that loratadine melts before the decomposition and the decomposition products are volatile in nitrogen. In air the decomposition follows very similar profile up to 300°C, but two exothermic events are observed in the 170–680°C temperature range. Flynn–Wall–Ozawa method was used for the solid-state kinetic analysis of loratadine thermal decomposition. The calculated activation energy (E a) was 91±1 kJ mol–1 for α between 0.02 and 0.2, where the mass loss is mainly due to the decomposition than to the evaporation of the decomposition products.  相似文献   

11.
The thermal decomposition study of Co(II)–malate, tartarate and phthalate complexes with imidazole was monitored by TG, DTG and DTA analysis in static atmosphere of air. The complexes and their calcination products were characterized by IR spectroscopy. The decomposition course and steps were analyzed and the kinetic parameters of the non-isothermal decomposition were calculated. The results revealed that the decomposition processes of these complexes are the best described by a random nucleation mechanism. The stability order found for these complexes follows the trend tartarate>phthalate>malate in terms of the dicarboxylic acid ligands.  相似文献   

12.
The thermoxidative behavior of atactic and isotactic polypropylene under dynamical thermoxidative conditions has been studied. It has been established that, with the increase of the heating rate, the development of the oxidative processes are diminished and consequently a modification in the reaction mechanism takes place. One can notice at the same time that the oxidative processes are more intense in the case of the atactic polymer. The 5–15°C/min heating rates determine significant differences between the thermal behavior of the samples, permitting the elaboration of the standard curves useful in fast determination of the atactic content of the industrial products by routine analysis.  相似文献   

13.
Thermal conductivity, specific heat capacity, thermal diffusivity and linear thermal expansion coefficient of two types of carbon fiber reinforced cement composites are measured in the temperature range up to 800°C. Thermal conductivity and thermal diffusivity are also determined for the specimens exposed to thermal load up to 800°C before the measurement. Differential thermal analysis (DTA), mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) are utilized for the assessment of thermal decomposition processes taking place in the high temperature range under consideration. The high temperature thermal properties of the studied materials are found to be positively affected by the application of the high alumina cement and in the case of the Portland cement based composite also by using the autoclaving procedure in the production process. Also, the randomly distributed carbon fibers that can reduce the damage of the pore structure by the thermal decomposition processes are identified as a positive factor in this respect. A comparison of thermal conductivity vs. temperature curves obtained for the specimens pre-heated to different temperatures is found to be a useful tool in the identification of major dynamic effects in the specimens due to the thermal decomposition reactions. The results are in a good agreement with the DTA, MIP, SEM and XRD analyses. The character of the thermal conductivity measurements that in fact includes the effects of convection and radiation into the thermal conductivity coefficient can be beneficial for a simple assessment of the influence of the fire on a dividing structure.  相似文献   

14.
《European Polymer Journal》2003,39(1):157-163
The subject of this work is the thermal behaviour of polypropylene/talc composites whose interface has been modified by atactic polypropylenes containing different numbers of succinyl fluorescein grafted groups. The interface modifiers used here were previously obtained in our laboratories by a two-step chemical modification of the melt of a by-product (atactic polypropylene) of industrial polymerisation reactors. The variations in interface activity caused by replacing a small amount of the polypropylene matrix in the composite by succinyl fluorescein grafted atactic polypropylene were clearly detected by differential scanning calorimetry as thermal responses. These studies show that interface agents are preferably located in the amorphous phase of the system. A correlation between the crystalline content of the polymer component and the degree of grafting of the interface agent is also established. Further, a relationship between the thermal behaviour and the mechanical properties of the system seems to emerge.  相似文献   

15.
Thermal decomposition kinetics of calix[6]arene (C6) and calix[8]arene (C8) were studied by Thermogravimetry analysis (TG) and Differential thermal analysis (DTA). TG was done under static air atmosphere with dynamic heating rates of 1.0, 2.5, 5.0, and 10.0 K min−1. Model-free methods such as Friedman and Ozawa–Flynn–Wall were used to evaluate the kinetic parameters such as activation energy (E a) and pre-exponential factors (ln A). Model-fitting method such as linear regression was used for the evaluation of optimum kinetic triplets. The kinetic parameters obtained are comparable with both the model-free and model-fitting methods. Within the tested models, the thermal decomposition of C6 and C8 are best described by a three dimensional Jander’s type diffusion. The antioxidant efficiency of C6 and C8 was tested for the decomposition of polypropylene (PP).  相似文献   

16.
ZnAc2·2H2O在空气中的热分解动力学研究   总被引:2,自引:0,他引:2  
用TG/DTA,DSC和XRD技术研究了固态物质ZnAc2.2H2O在空气中的热分解过程.结果表明,ZnAc2.2H2O在空气中发生两步分解,其失重率与理论计算失重率相符.XRD结果表明,ZnAc2.2H2O分解的最终产物为ZnO.用Friedman法和Flynn-Wall-Ozawa(FWO)法求得分解过程的活化能E,并通过多元线性回归方法给出了可能的机理函数.ZnAc2.2H2O在空气中两步分解的活化能分别为119.82和66.82kJ/mol.  相似文献   

17.
Thermoanalytical techniques have been used to investigate the oxidative thermal degradation of polypropylene with special reference to the inhibiting effects of certain metal chelates. The inhibiting efficiency, defined in terms of the difference in temperature between the melting point of the polymer and the temperature of onset of exothermic oxygen uptake, has been determined for each additive using differential thermal analysis (DTA). The exothermicity of polypropylene oxidation has also been estimated.  相似文献   

18.
Seven novel divalent transitional metal chelate polymers compounds (commonly known as chelate compounds or metal coordination complexes or polymer complexes) have been characterized by thermogravimetry (TG), differential thermal gravimetry (DTG) and differential thermal analysis (DTA) methods. Thermal decomposition behaviour of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) polymers with terphthaoyl-bis(p-methoxyphenylcarbamide) has been investigated by thermogravimetric analysis (TGA) at heating rate 10 °C min?1 under nitrogen atmosphere. TG/DTA of chelate compounds were shown to be a stable compound against thermal decomposition which was measured on the basis of final decomposing temperature, but it is observed in some curves that decomposition takes place at low temperature due to the lattice water, which is always placed at outer coordination sphere of the central metal ion. The presence of both lattice and coordinated water were noteworthy investigated in Co(II), Ni(II) and Cu(II) chelate polymer compounds, whereas lattice water found in Zn(II), Cd(II) and Hg(II). However, Mn(II) showed only coordinated water. Thermal stabilities for release of lattice water, coordinated water and organic moiety that occur in sequential decomposition of chelate compounds are explained on the basis of ionic size effect and electronegativity. The processes of thermal degradation taking place in seven chelate polymers were studied comparatively by TG/DTG/DTA curves which indicating the difference in the thermal decomposition. Coats–Redfern integral method is used to determine the kinetic parameters for the successive steps in the decomposition sequence of TG curves. Scanning electron microscope images of some chelate polymers were shown in previous publication revealed that particle sizes of chelate polymers were found to be of nanomaterial level therefore, resulting chelate compounds might be called as nanomaterial.  相似文献   

19.
Summary The paper discusses the results of thermal analysis and flammability of butadiene-acrylonitrile rubber, Perbunan NT 1845 of Bayer, cross-linked with iodoform. The properties of the iodoform vulcanizate have been compared with those of peroxide vulcanizate. The thermal analysis has been performed in air with use of a derivatograph under air and nitrogen atmosphere as well as dynamic scanning calorimetry (DSC). The flammability of vulcanizates has been determined by the method of oxygen index and in air. The toxicity of the thermal decomposition and combustion products of the vulcanizates under investigation has been also determined. Based on complementary examinations, DTA and DSC curves have been interpreted from the point of view of thermal transitions of the conventionally and non-conventionally cross-linked nitrile rubbers. The glass transition temperature of the cross-linked polymer both in cooling and heating has been determined.  相似文献   

20.
The thermal decomposition of a polypropylene film, a polyurethane adhesive, as well as a polypropylene coated with a polyurethane adhesive have been studied by a thermogravimetric (TG) analysis, at a heating rate of 5°C a minute with air flow. During the thermal analysis different decomposition steps which correspond to different weight loss rates were obtained on thermal curves. Gases were collected between the different decomposition steps and then analyzed. The results reported deal with the conversion of carbon into oxides and aldehydes—ketones, and also with that of nitrogen into hydrogen cyanide and isocyanates. The findings lead to a better understanding of the hazards and risks of toxic emissions that may be generated by the gas formation following heating of these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号