首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure vinylene carbonate polymerizes readily in dimethyl sulfoxide solutions upon initiation by azobisisobutyronitrile (AIBN). The monomer conversion is characterized by a limiting value which appears to be a function of the temperature and the initial concentrations of both the initiator and the monomer. Increasing both initiator concentration and temperature results in higher final conversions, whereas a maximum conversion is indicated for initial monomer concentrations in the range of 80% to 90%. Principal kinetic quantities were found to be adequately represented by the equations kd = 24.3 × 105 exp {?11300/RT} and kp(f/kt)1/2 = 46.3 × 105 exp {?8900/RT} for the temperature range of 50–80°C. The average degree of polymerization was found to be affected by chain transfer to the solvent. A value of 5.8 × 10?4 was determined for the corresponding chain transfer constant.  相似文献   

2.
The kinetics of the anionic polymerization of octamethylcyclotetrasiloxane (D4) initiated by α-methylstyrene living polymer in tetrahydrofuran was studied. The following kinetic scheme was postulated: Initiation: Propagation: where S- and M represent the initiator and D4, respectively. At a living end concentration of 0.0377 mole/l. and a monomer concentration of 1.5 mole/l. in tetrahydrofuran at 25°C. the following kinetic data were obtained: k1 = 2.3 × 10?4 l./mole-sec., k2 < 2.3 × 10?5 sec.?1, k3 = 2.75 × 10?2l./mole-sec. k4 ≈ 1.17 × 10?2 sec.?1, K1 > 10 l./mole and K2 ≈ 2.35 l./mole. The rate constants k1 and k3 were found to be dependent on the concentration of anions. This is attributed to the dissociation of ion pairs to free ions at lower concentration. Under the experimental conditions studied the majority of the anions were present in the form of ion pairs. The reactivity of the free ions is about 100 times greater than that of ion pairs. There is no temperature effect on K2, indicating zero ΔH and positive ΔS in the propagation reaction.  相似文献   

3.
Polymerization of acrylamide monomer, initiated by the redox system involving acidified ceric ammonium sulfate and 2-mercaptoethanol (2-ME) was carried out in an aqueous medium at 25° C. White, rigid polyacrylamide, isolated under controlled experimental conditions, showed a molecular weight of 1.5 × 104 from viscosity measurements. The rate of monomer (M) conversion to polymer was found to be proportional to [M]1.5, [2-ME]0.5, and [Ce(IV)]0.4. Further, the rate of disappearance of ceric ion was observed to be directly proportional to [2-ME] and independent of [M] in the range of 0.16–0.48 mole/liter. The explanation of the above proportionalities is given in terms of a proposed reaction mechanism. Values of the usual rate constants, kr, k0/kt and kt./kp ½ have been computed.  相似文献   

4.
The polymerization kinetics in water of acrylylglycinamide (AG) initiated by K2S2O8 was studied over the temperature range 40.0 to 60.0°C. Monomer concentration was varied from 7.8 × 10?3 to 31.2 × 10?3M and catalyst from 1.85 × to 11.10 × 10?5M. The rate expression is ?d[M]/dt = Rp, = k1.22[K2S2O8]0.5[M]1.22, and the overall empirical rate constant, k1.22 = 1.14 × 1011e?15,800/RT 1.0.72 mole?0.72 min?1. To explain the dependence on monomer, a kinetic scheme which includes a bimolecular reaction (k2) between monomer and initiator is suggested. The simplified expression which describes the initial rate of polymerization is: ?d[M]/dt = Rp, = k4(2[I]/k5)1/2[M](k1 + k2[M])1/2, where k1, k2, k4 and k5 are rate constants for S2O8 = decomposition, a bimolecular reaction between monomer and initiator, propagation, and termination, respectively. Individual bimolecular rate constants are expressed in liter/mole-min. The equation predicts a dependence on monomer concentration between 1.0 and 1.5 with 1.5 being approached a t high monomer concentrations. Plots of RP2/[M]2 versus [M] are linear, as predicted by the postulated reaction route and values for k2 and k4/k51/2 were obtained from the slopes and intercepts of these plots. The temperature dependence of the bimolecular monomer-initiator reaction is k2 = 5.19 × 1021e?36,000/RT. Instead of the usual behavior, the k4/k51/2 ratio was found to decrease with temperature and the difference of activation energies, (E4 ? E5/2), is ?1.50 kcal. The temperature dependence of the propagation to square root of the termination rate constant ratio is k4/k51/2 = 6.16e1500/RT. These rather unusual results may be related to the ability of AG polymers in water to form thermally reversible gels; even above the gel melting points, the polymers are considerably aggregated in solution. This would tend to make the bimolecular termination reaction more temperature dependent and also account for the high values (59–69) for the k4/k51/2 ratios. For similar temperatures, the overall rate constants for AG are approximately four times those for acrylamide.  相似文献   

5.
The effects of non‐ideal initiator decomposition, i.e., decomposition into two primary radicals of different reactivity toward the monomer, and of primary radical termination, on the kinetics of steady‐state free‐radical polymerization are considered. Analytical expressions for the exponent n in the power‐law dependence of polymerization rate on initiation rate are derived for these two situations. Theory predicts that n should be below the classical value of 1/2. In the case of non‐ideal initiator decomposition, n decreases with the size of the dimensionless parameter α ≡ (ktz /kdz) √rinkt, where ktz is the termination rate coefficient for the reaction of a non‐propagating primary radical with a macroradical, kdz is the first‐order decomposition rate coefficient of non‐propagating (passive) radicals, rin is initiation rate, and kt is the termination rate coefficient of two active radicals. In the case of primary radical termination, n decreases with the size of the dimensionless parameter βkt,s rin1/2/kp,s M rt,l1/2, where kt,s is the termination rate coefficients for the reaction of a primary (“short”) radical with a macroradical, kt,l is the termination rate coefficients of two large radicals, kp,s is the propagation rate coefficient of primary radicals and M is monomer concentration. As kt is deduced from coupled parameters such as kt /kp, the dependence of kp on chain length is also briefly discussed. This dependence is particularly pronounced at small chain lengths. Moreover, effects of chain transfer to monomer on n are discussed.  相似文献   

6.
The kinetics of the radiation-induced polymerization of vinyl chloride in the presence of precipitants has been successfully described by a one-parameter equation as follows, where ?0 is initial monomer volume fraction, X is conversion, t is time, and k is reaction constant. The equation was confirmed for extensive conditions of temperatures and monomer concentrations in the case of polymerization in methanol. The degree of polymerization was related with the reaction constant k, initial monomer volume fraction ?0, monomer chain transfer constant Cm, conversion X, and the initiation rate I as follows, The factors which determine the value of the reaction constant k were elucidated through measurements of the reaction constant k and the degree of polymerization DP n.  相似文献   

7.
The propagation kinetics of anionic polymerization of styrene initiated by dicarbanionic oligostyrylbarium (PS=Ba++) in THF are described. The apparent propagation rate constant kp increases drastically with the degree of polymerization (DP) of living chains and tends at 20°C, for the highest molecular weight (DP ? 5000), to the value determined for monocarbanionic polystyrylbarium(PS?)2Ba++. At given DP, the propagation step follows usual first-order kinetics with respect to monomer, and kp is inversely proportional to carbanion concentration; as observed for (PS?)2Ba++. Similar behavior is observed in the temperature range from ?60 to +20°C. The activation energy of the propagation is 4–5 kcal/mole (16.7–21 kJ/mole). It is shown that kp may be considered as directly proportional to the dissociation constant Kd of ion pairs (~S?Ba++?S~ is considered as an ion pair ~(SBa)+S?~). The striking variation of kp with the DP living chains is interpreted in terms of cyclic living chains, in which both carbanionic ends are bound to the same cation. Values of the intramolecular dissociation constant Kd of ion pairs included in such a model are computed as a function of DP, and their variation is found to fit rather well with experimental data.  相似文献   

8.
The effect of various substituted amines on the polymerization of acrylonitrile initiated by ceric ammonium sulfate has been studied in aqueous solution at 30°C. It was found that the secondary and tertiary amines considerably increased the rate of polymerization, whereas the primary amines seemed to have no effect at all. From the kinetic studies it was found that the overall polymerization rate Rp is independent of ceric ion concentration and can be expressed by the equation: Rp = k1 [amine] [monomer] + k2[monomer]2, where k1 and k2 are constants (involving different rate constants). The accelerating effect of the amines was attributed to a redox reaction between the ceric ion and the amine involving a single electron transfer, the relative activity of the different amines being thus dependent on the relative electron-donating tendency of the substituents present in the amine. The mechanism of the polymerization is discussed on the basis of these results, and various kinetic constants are evaluated.  相似文献   

9.
The bulk polymerization of 2‐ethylhexyl acrylate (2‐EHA), induced by a pulsed electron beam, was investigated with pulse radiolysis, gravimetry, and Fourier transform infrared spectroscopy. The roles of the dose rate, pulse frequency, and added acrylic acid (AA) in the polymerization of 2‐EHA were examined at ambient temperature. In the range of 12.6–71.2 Gy/pulse, the polymerization of 2‐EHA was dose‐rate‐dependent: at the same total dose, a lower dose rate yielded a higher conversion. Also, a lower pulse rate gave a higher conversion at the same total dose. The addition of up to 10 wt % AA showed no increase in the conversion of 2‐EHA at a low conversion (8 kGy), but at a higher conversion (16 kGy), a 20 wt % increase in the conversion of 2‐EHA was observed. The estimated values (1.6 ± 0.3) × 10?3 (dm3 s)3/2 mol?1 s?1/2 for kp(G/2kt)1/2 and 2.6 ± 0.8 dm3 s J?1 for 2ktG (where kp is the rate constant of propagation, kt is the rate constant of bimolecular termination, and G is the yield of free radicals) were obtained at relatively low conversions. The reaction rate constant of the addition of 2‐EHA· free radicals to the monomer was measured by pulse radiolysis and found to be 2.8 × 102 mol?1 dm3 s?1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 196–203, 2003  相似文献   

10.
The polymerization of methyl methacrylate can be initiated by a charge-transfer complex of liquid sulfur dioxide and pyridine in the presence of carbon tetrachloride. The molar ratio of sulfur dioxide and pyridine which participated in the complex was found from a spectrophotometric study to be 2:1. The polymerization proceeds through free-radical intermediates. The overall rate of polymerization is proportional to the square root of the concentration of the complex, and the values of kp/kt1/2 under the various polymerization conditions were satisfactorily consistent with the literature value. For the activation energy of the overall reaction, 8.2 kcal./mole was obtained, and for initiation, 9.7 kcal./mole was evaluated from the values of kp/kt1/2. It was deduced from a kinetic mechanism for the initiation that a primary radical may be produced from the reduction of carbon tetrachloride by an associated complex consisting of liquid sulfur dioxide–pyridine complex and the monomer.  相似文献   

11.
Abstract

Gamma ray induced polymerization of N,N'-methylenebisacrylamide (MBA) in aqueous solution has been studied. Rates of polymerization have been determined as a function of dose, dose rate, and monomer concentration. Polymerization mechanism was found to be free radical with chain propagation step involving ring formation. About 90% conversion was achieved in 25 minutes of irradiation (dose rate 1.54 × 1018 eV dm?3 s?1) of MBA solution (36 mmol). The polymerization rates were found to vary from 1.9 × 10 4 to 5.6 × 10?4 mol dm?3 s?1 when the monomer concentrations were varied between 80–164 mmols. The value of the constant kp/kt 1/2 was calculated to be 9.85 for the dose rate of 1.54 × 1018 eV dm?3 s?1. The precipitated polymer showed mono disperse particles of diameter of about 170 nm. The polymer was found to be highly crosslinked and insoluble in any solvent.  相似文献   

12.
Abstract

The effect of anion concentration on the apparent rate constant of polymerization kA p of isobutylene (IB) induced by the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4 initiating system using the CH2Cl2/nC6H14 (60/40 v/v) solvent system at ?40 and ?80°C was studied by the use of nBu4NCl. Computer simulation has shown that kA p decreases several orders of magnitude upon the addition of even a very small amount of common anion TiCl?- 5 to the charge. The rate of change is reduced in the concentration range of experimental interest. It was concluded that the decrease of kA p with increasing TiCl ?- 5 concentration is mainly due to the decreasing contribution of propagation by free ions. The contribution (%) of propagation by free ions to the apparent rate of propagation was calculated.  相似文献   

13.
According to a reaction scheme which as its main features assumes that polymerization is predominantly in the interior of the monomer swollen polyvinyl chloride) particles and that all the decaying initiator finally contributes to the polymerization within the polymer particles, the ratio kp (f/kt)½ = K (where kp, kt are rate constants for chain propagation and chain termination, respectively, within the particles and f is initiator efficiency) has been calculated for bulk polymerization of vinyl chloride at three temperatures. K is found to be markedly larger than the corresponding quantity for homogeneous solution polymerization, e.g., at 50°C it is seven times this latter quantity. The characteristic ratio K shows a marked negative temperature dependence, which corresponds to approximately -4.5 kcal/mole for Ep - (Et/2), when f is assumed to be independent of temperature. This behavior is quite consistent with a strong gel effect being operative at the site of reaction, i.e., the swollen polymer particles can be taken as equivalent to a homogeneous polymerization system at high conversion.  相似文献   

14.
The synthesis of two new isomeric monomers, cis‐(2‐cyclohexyl‐1,3‐dioxan‐5‐yl) methacrylate (CCDM) and trans‐(2‐cyclohexyl‐1,3‐dioxan‐5‐yl) methacrylate (TCDM), starting from the reaction of glycerol and cyclohexanecarbaldehyde, is reported. The process involved the preparation of different alcohol acetals and esterification with methacryloyl chloride of the corresponding cis and trans 5‐hydroxy compounds of 2‐cyclohexyl‐1,3‐dioxane. The radical polymerization reactions of both monomers, under the same conditions of temperature, solvent, monomer, and initiator concentrations, were studied to investigate the influence of the monomer configuration on the values of the propagation and termination rate constants (kp and kt ).The values of the ratio kp /kt 1/2 were determined by UV spectroscopy by the measurement of the changes of absorbance with time at several wavelengths in the range 275–285 nm, where an appropriate change in absorbance was observed. Reliable values of the kinetics constants were determined by UV spectroscopy, showing a very good reproducibility of the kinetic experiments. The values of kp /kt 1/2, in the temperature interval 45–65 °C, lay in the range 0.40–0.50 L1/2/mol1/2s1/2 and 0.20–0.30 L1/2/mol1/2s1/2 for CCDM and TCDM, respectively. Measurements of both the radical concentrations and the absolute rate constants kp and kt were also carried out with electron paramagnetic resonance techniques. The values of kp at 60 °C were nearly identical for both the trans and cis monomers, but the termination rate constant of the trans monomer was about three times that of the cis monomer at the same temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3883–3891, 2000  相似文献   

15.
A study of the photopolymerization of vinyl monomers in the presence of tetramethyltetrazene (TMT) was made. TMT was found to act as an effective sensitizer. In the photopolymerization of vinyl monomers such as methyl methacrylate or styrene the rate of polymerization was expressed by the equation: Rp = k[TMT]1/2[monomer]. The chain-transfer constant of TMT under ultraviolet irradiation was estimated to be 3.8 × 10?2 for the above monomers. A linear correlation was found to exist between the reactivity of dimethylamino radical toward the vinyl monomers and e values for the corresponding monomers.  相似文献   

16.
For the first time, a 1000 Hz pulse laser has been applied to determine detailed kinetic rate coefficients from pulsed laser polymerization–size exclusion chromatography experiments. For the monomer tert‐butyl acrylate, apparent propagation rate coefficients kpapp have been determined in the temperature range of 0–80 °C. kpapp in the range of few hundreds to close to 50 000 L·mol–1·s–1 are determined for low and high pulse frequencies, respectively. The apparent propagation coefficients show a distinct pulse‐frequency dependency, which follows an S‐shape curve. From these curves, rate coefficients for secondary radial propagation (kpSPR), backbiting (kbb), midchain radical propagation (kptert), and the (residual) effective propagation rate (kpeff) can be deduced via a herein proposed simple Predici fitting procedure. For kpSPR, the activation energy is determined to be (17.9 ± 0.6) kJ·mol–1 in excellent agreement with literature data. For kbb, an activation energy of (25.9 ± 2.2) kJ·mol–1 is deduced.

  相似文献   


17.
It is demonstrated by experiment and simulation that the commercially available thioketone 4,4‐bis(dimethylamino)thiobenzophenone is capable of controlling AIBN‐initiated bulk butyl acrylate polymerization at 80 °C. On the basis of molecular weight data and from monomer conversion versus time curves, the associated rate parameters are estimated. The addition rate coefficient, kad, for the reaction of a propagating chain with the thioketone is close to 106 L · mol−1 · s−1 and the fragmentation rate coefficient, kfrag, is around 10−2 s−1 giving rise to large equilibrium constants in the order of 108 L · mol−1. Furthermore, cross‐ and self‐termination of the dormant radical species are identified to be operational.

  相似文献   


18.
Using p,p'-dimethoxydiphenyldiazomethane (DMDM) as initiator, the polymerization of methyl methacrylate (MMA) in benzene or in bulk was carried out. The initial rate of polymerization, Rp, was found to be expressed by the following equation:

Rp = k[DMDM]0.53 [MMA]0.84

The polymerization was confirmed to proceed by a radical mechanism. The over-all activation energy for the polymerization in benzene was calculated as 19.3 kcal/mole. The rate of thermal decomposition of DMDM was also measured in benzene and the rate equation was obtained as follows:

kd (sec?1) = 1.0 × 1015 exp (?29.1 kcal/RT) (for 50-80°C)

Explanations of these observations are discussed in connection with those of the preceding papers.  相似文献   

19.
Polymerization of methyl methacrylate initiated by cobaltic ions in perchloric, nitric and sulfuric acids was studied in the temperature range 15–25°C. In all three acids, water oxidation occurred as a side reaction. In HClO4 and HNO3 media monomer oxidation was shown to be an additional complicating feature. Rates of cobaltic ion disappearance, monomer disappearance, and chain lengths of polymers were measured with variations in [M], [Co3+], [H+], initially added [Co2+], and temperature. In HClO4 and HNO3 experimental results favored simultaneous initiation by Co3+ and CoOH2+ species, while in H2SO4, Co3+ ions alone were the active entities. An appropriate kinetic scheme to fit all the experimental observations is proposed. The various rate constants were evaluated.  相似文献   

20.
Propagation rate coefficients, kp, of free-radical methacrylic acid (MAA) polymerization in aqueous solution are presented and discussed. The data has been obtained via the pulsed laser polymerization – size-exclusion chromatography (PLP-SEC) technique within extended ranges of both monomer concentration, from dilute solution up to bulk MAA polymerization, and of degree of ionic dissociation, from non-ionized to fully ionized MAA. A significant decrease of kp, by about one order of magnitude, has been observed upon increasing monomer concentration in the polymerization of non-ionized MAA. Approximately the same decrease of kp occurs upon varying the degree of MAA ionization, α, at low MAA concentration from α = 0 to α = 1. With partially ionized MAA, the decrease of kp upon increasing MAA concentration is distinctly weaker. For fully ionized MAA, the propagation rate coefficient even increases toward higher MAA concentration. The changes of kp measured as a function of monomer concentration and degree of ionization may be consistently interpreted via transition state theory. The effects on kp are essentially changes of the Arrhenius pre-exponential factor, which reflects internal rotational mobility of the transition state (TS) structure for propagation. Friction of internal rotation of the TS structure is induced by ionic and/or hydrogen-bonded intermolecular interaction of the activated state with the molecular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号