首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文用表面增强拉曼光谱(SERS)系统地研究了牛血清白蛋白(BSA)与Ag/Pt核壳纳米粒子的相互作用,特别是核壳纳米粒子与被吸附的牛血清白蛋白分子之间的界面作用,并用紫外可见光谱、圆二色光谱(CD)作为辅助手段进一步证实了BSA与核壳纳米粒子的作用状况.通过紫外光谱研究发现,核壳纳米粒子的特征吸收峰的消失表明纳米粒子完全被牛血清白蛋白包覆.用近紫外CD光谱探讨了血清白蛋白的芳基氨基酸(苯丙氨酸、酪氨酸)残基微环境的变化.为探讨牛血清白蛋白与Ag/Pt核壳纳米粒子的作用机理及纳米尺寸的生物效应奠定了理论基础.  相似文献   

2.
Ag-Pt nanoparticles with a confirmed core-shell structure could only be formed by the successive reduction method using Ag nanoparticles as the seeds. The core-shell structure could be conveniently inferred from the transferability of the particles from water to toluene. Independent measurements by UV-vis spectroscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray photoelectron spectroscopy were used to validate the experimental results. The reverse order of synthesis using Pt nanoparticles as the seeds did not result in any core-shell product. Instead a physical mixture of Ag nanoparticles and the original Pt seeds was obtained under the same experimental conditions.  相似文献   

3.
Au/Ag核一壳结构复合纳米粒子形成机制的研究   总被引:13,自引:0,他引:13  
纪小会  王连英  袁航  马岚  白玉白  李铁津 《化学学报》2003,61(10):1556-1560
在已制备好的Au纳米粒子表面,通过化学还原的方法沉积生长Ag包覆层,通过 控制Au, Ag的比列,制备了粒度均匀且粒径可控的Au/Ag核-壳结构纳米粒子。利用 UV-vis吸收光谱和透射电子显微镜(TEM)对SAu, Ag摩尔比为1:10的复合纳米粒 子的光学性质和形态进行随时监测,直接观察了核-壳结构纳米粒子的生长过程: 一部分Ag+在Au核表面还原生长,溶液中其余Ag+还原形成银的纳米团簇向粒子表面 的继续沉积生长,壳层增厚。  相似文献   

4.
An environmentally benign method for the synthesis of noble metal nanoparticles has been reported using aqueous solution of gum kondagogu (Cochlospermum gossypium). Both the synthesis, as well as stabilization of colloidal Ag, Au and Pt nanoparticles has been accomplished in an aqueous medium containing gum kondagogu. The colloidal suspensions so obtained were found to be highly stable for prolonged period, without undergoing any oxidation. SEM-EDXA, UV-vis spectroscopy, XRD, FTIR and TEM techniques were used to characterize the Ag, Au and Pt nanoparticles. FTIR analysis indicates that -OH groups present in the gum matrix were responsible for the reduction of metal cations into nanoparticles. UV-vis studies showed a distinct surface plasmon resonance at 412 and 525 nm due to the formation of Au and Ag nanoparticles, respectively, within the gum network. XRD studies indicated that the nanoparticles were crystalline in nature with face centered cubic geometry. The noble metal nanoparticles prepared in the present study appears to be homogeneous with the particle size ranging between 2 and 10 nm, as evidenced by TEM analysis. The Ag and Au nanoparticles formed were in the average size range of 5.5±2.5 nm and 7.8±2.3 nm; while Pt nanoparticles were in the size range of 2.4±0.7 nm, which were considerably smaller than Ag and Au nanoparticles. The present approach exemplifies a totally green synthesis using the plant derived natural product (gum kondagogu) for the production of noble metal nanoparticles and the process can also be extended to the synthesis of other metal oxide nanoparticles.  相似文献   

5.
SiO2/Ag核壳结构纳米粒子的制备及表征   总被引:3,自引:0,他引:3  
胡永红  容建华  刘应亮  满石清 《化学学报》2005,63(24):2189-2193
以金纳米粒子为表面晶种, 通过化学还原的方法制备了二氧化硅/银核壳复合纳米粒子. 采用TEM, XRD及UV/vis对其结构、形貌以及光学性质进行了表征和研究, 结果表明所得到的复合粒子粒径均匀、银纳米壳光滑完整, 厚度可控. 并且随着银纳米壳厚度的增大, 其光学等离子体共振峰逐渐蓝移. 而当银纳米粒子在二氧化硅胶粒表面上生长的过程中, 它们的共振峰又逐渐红移, 直到完整的银壳形成.  相似文献   

6.
The interaction of lysozyme(Lys) and gold nanoparticles was investigated via UV-vis absorption and resonance light-scattering method.There are some changes of the plasmon absorption and resonance light-scattering of gold nanoparticles that were observed via the addition of Lys.The normalized plasmon absorption and resonance light-scattering intensity with gold nanoparticles were both linear wilh 1-20 nmol/L Lys.A simple model about the component of the gold nanoparticles and Lys complex was established and the calculated result was fitted well in their concentration ratio.Furthermore,the activity analysis of Lys showed that the interaction was weak and nondestructive.  相似文献   

7.
Customizing core-shell nanostructures is considered to be an efficient approach to improve the catalytic activity of metal nanoparticles. Various physiochemical and green methods have been developed for the synthesis of core-shell structures. In this study, a novel liquid-phase hydrogen reduction method was employed to form core-shell Pt@Au nanoparticles with intimate contact between the Pt and Au particles, without the use of any protective or structure-directing agents. The Pt@Au core-shell nanoparticles were prepared by depositing Au metal onto the Pt core; AuCl4− was reduced to Au(0) by H2 in the presence of Pt nanoparticles. The obtained Pt@Au core-shell structured nanoparticles were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution TEM, fast Fourier transform, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and H2-temperature programmed reduction (H2-TPR) analyses. The EDX mapping results for the nanoparticles, as obtained from their scanning transmission electron microscopy images in the high-angle annular dark-field mode, revealed a Pt core with Au particles grown on its surface. Fourier transform measurements were carried out on the high-resolution structure to characterize the Pt@Au nanoparticles. The lattice plane at the center of the nanoparticles corresponded to Pt, while the edge of the particles corresponded to Au. With an increase in the Au content, the intensity of the peak corresponding to Pt in the FTIR spectrum decreased slowly, indicating that the Pt nanoparticles were surrounded by Au nanoparticles, and thus confirming the core-shell structure of the nanoparticles. The XRD results showed that the peak corresponding to Pt shifted gradually toward the Au peak with an increase in the Au content, indicating that the Au particles grew on the Pt seeds; this trend was consistent with the FTIR results. Hence, it can be stated that the Pt@Au core-shell structure was successfully prepared using the liquid-phase hydrogen reduction method. The catalytic activity of the nanoparticles for the oxidation of toluene was evaluated using a fixed-bed reactor under atmospheric pressure. The XPS and H2-TPR results showed that the Pt1@Au1/Al2O3 catalyst had the best toluene oxidation activity owing to its lowest reduction temperature, lowest Au 4d & 4f and Pt 4d & 4f binding energies, and highest Au0/Auδ+ and Pt0/Pt2+ proportions. The Pt1@Au2Al2O3 catalyst showed high stability under dry and humid conditions. The good catalytic performance and high selectivity of Pt@Au/Al2O3 for toluene oxidation could be attributed to the high concentration of adsorbed oxygen species, good low-temperature reducibility, and strong interaction.  相似文献   

8.
Palladium-gold core-shell nanoparticles were synthesized in the aqueous domains of water in oil microemulsions by the sequential reduction of H2PdCl4 and HAuCl4. The nanoparticles were characterized by ultraviolet-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). The UV-vis spectra confirm the presence of palladium nanoparticles after reducing H2PdCl4. These particles have been used as seeds for the core-shell particles. UV-vis spectra show that, after reducing HAuCl4, the surface plasmon absorption of the nanoparticles is dominated by gold, revealing the encapsulation of the palladium seeds. These results agree with crystallographic analysis performed with high-resolution TEM pictures, as well as with selected area electron diffraction. The TEM pictures show the core-shell nanoparticles with an average diameter of 9.1 nm, as compared with 5 nm for the palladium seeds, in good agreement with the used Pd:Au molar ratio.  相似文献   

9.
In the present study, we demonstrate the precise tuning of surface plasmon resonance over the full visible range by compositional variation of the nanoparticles. The addition of sulfide ions into the Au@Ag core-shell nanocubes generates stable Au@Ag/Ag(2)S core-shell nanoparticles at room temperature, and the plasmon extinction maximum shifts to the longer wavelength covering the entire visible range of 500-750 nm. Based on the optical property, the Au@Ag core-shell nanocubes are employed as a colorimetric sensing framework for sulfide detection in water. The detection limit is measured to be 10 ppb by UV-vis spectroscopy and 200 ppb by naked eyes. Such nanoparticles would be useful for decoration and sensing purposes, due to their precise color tunability and high stability.  相似文献   

10.
A seed mediated procedure for the synthesis of hydrophobic Au(core)Ag(shell) nanoparticles in toluene is demonstrated. The reaction proceeds by way of the interfacial reduction of silver ions by 3-pentadecylphenol followed by their deposition on hydrophobized Au nanoparticles. Such a hitherto unreported interfacial seeded growth reaction leads to the formation of phase pure Au(core)Ag(shell) nanoparticles that retain the hydrophobicity of the seed particles and remain stable in toluene. Such core-shell structures are however not formed in the aqueous phase. The core-shell architecture was verified using TEM analysis and the formation process was studied by recording the UV-vis spectra of the organic phase nanoparticles as a function of time. TEM kinetics also showed gradual increase in the silver layer thickness. Conclusive evidence was however obtained on examination of the HRTEM images of the products formed. Elemental analysis using X-ray photoelectron spectroscopy of the Au(core)Ag(shell) nanostructure revealed the presence of metallic silver. Moreover changing the surface capping of the Au seed does not affect the formation of the Au(core)Ag(shell) nanostructure.  相似文献   

11.
Heterogeneous Au-Pt nanostructures have been synthesized using a sacrificial template-based approach. Typically, monodispersed Au nanoparticles are prepared first, followed by Ag coating to form core-shell Au-Ag nanoparticles. Next, the galvanic replacement reaction between Ag shells and an aqueous H(2)PtCl(6) solution, whose chemical reaction can be described as 4Ag + PtCl(6)(2-)→ Pt + 4AgCl + 2Cl(-), is carried out at room temperature. Pure Ag shell is transformed into a shell made of Ag/Pt alloy by galvanic replacement. The AgCl formed simultaneously roughens the surface of alloy Ag-Pt shells, which can be manipulated to create a porous Pt surface for oxygen reduction reaction. Finally, Ag and AgCl are removed from core-shell Au-Ag/Pt nanoparticles using bis(p-sulfonatophenyl)phenylphosphane dihydrate dipotassium salt to produce heterogeneous Au-Pt nanostructures. The heterogeneous Au-Pt nanostructures have displayed superior catalytic activity towards oxygen reduction in direct methanol fuel cells because of the electronic coupling effect between the inner-placed Au core and the Pt shell.  相似文献   

12.
Chen M  Gao L 《Inorganic chemistry》2006,45(13):5145-5149
A facile in situ replacement reaction route was successfully introduced for synthesizing Ag nanoshells with outer diameters of 40-50 nm and inner diameters of 20-30 nm using Co nanoparticles as sacrificial templates. The products were characterized by XRD, TEM, SAED, and UV-vis absorption spectra. The formation mechanism was also discussed. The reaction driving force comes from the large reduction potential gap between the Ag+/Ag and Co2+/Co redox couples, which results in the consumption of Co cores and the formation of a hollow cavity of Ag nanoshells. The UV-vis spectrum of this nanostructure exhibits a distinct difference from that of solid nanoparticles, which makes it a good candidate for application in photothermal materials.  相似文献   

13.
采用沉淀法制备了球形CeO2纳米粒子,将其作为核粒子溶液,然后向其中滴加四氯合金酸溶液,在CeO2胶体表面利用柠檬酸钠还原[AuCl4]-离子,得到了CeO2@Au核壳结构纳米粒子。TEM分析表明,CeO2纳米粒子分散效果好,粒径为5 nm;CeO2@Au核壳粒子为球形,无团聚,平均粒径为15 nm。XRD分析表明,CeO2@Au核壳粒子为晶型结构,属于立方晶系,CeO2空间群为O5H-FM3M,Au的空间群为Fm-3m。UV-vis分析发现,CeO2@Au核壳粒子在300和520 nm处呈现出两个比较强的吸收峰,分别对应于CeO2胶体溶液的吸收峰和金粒子的表面等离子共振吸收峰。EDS分析了核壳结构CeO2@Au纳米粒子中存在Ce,O和Au 3种元素。XPS分析表明,Ce3d3/2和Au4f电子结合能与标准结合能相比发生了变化,说明CeO2与Au之间存在着相互作用。  相似文献   

14.
We report herewith the synthesis of hollow Pt nanospheres by using bis(p-sulfonatophenyl)phenylphosphine to selectively remove the Ag cores of Ag-Pt core-shell nanoparticles. Core-shell Ag-Pt nanoparticles were first obtained by the successive reduction method with a discontinuous Pt shell to allow the BSPP passage. Transmission electron microscopy imaging of the core-shell Ag-Pt nanoparticles before and after BSPP dissolution showed little changes in the particle size, indicating that the removal of the Ag cores had occurred isomorphously. The hollow Pt nanospheres, together with the predecessor Ag-Pt core-shell particles of the same size, were transferred from water to toluene and surface modified by dodecylamine in toluene. This allows the catalytic activities of solid and hollow Pt particles in room temperature methanol oxidation reaction to be compared under conditions of identical particle size and the same surface environment. The measured higher specific activity of the Pt hollow nanospheres could then be attributed unambiguously to the larger specific surface area prevalent in the porous hollow structure.  相似文献   

15.
We developed a simple method for the preparation of polyelectrolyte/silver nanocomposites, where silver nanoparticles were dispersed in a polyelectrolyte. Copoly(TEAMPS/VP)/silver (w/w=100/0, 100/1, 100/2, 100/3 and 100/4) nanocomposites were obtained by a thermal decomposition reaction of silver carbamate complex at 130 degrees C, and well-dispersed silver colloids were stabilized by copolymer of tetraethylammonium 2-acrylamido-2-methyl-1-propanesulfonate (TEAMPS) and N-vinylpyrrolidone (VP). A dark brown solution in its UV-vis absorption spectrum showed surface plasmon resonance absorption bands at 420 nm in solution. The silver precursor and the resulting polyelectrolyte/Ag nanocomposite was characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), infrared (IR), transmission electron microscopy (TEM). In addition the humidity-sensing properties using copoly(TEAMPS/VP)/Ag nanocomposite films were examined.  相似文献   

16.
A one-step sequential method for preparing AgCl@polypyrrole-chitosan core-shell nanoparticles and subsequently the formation of polypyrrole-chitosan hollow nanospheres is reported. The formation of the core and the shell is performed in one reaction medium almost simultaneously. Transmission electron microscopy (TEM) images show the presence of core-shell nanoparticles and hollow nanospheres. Ultraviolet-visible (UV-vis) studies reveal that AgCl was formed first followed by polypyrrole. X-ray diffration (XRD) and UV-vis studies show that AgCl was present in the core-shell nanoparticles and could be removed completely from the core.  相似文献   

17.
Au/Ag核-壳结构纳米粒子的制备及其SERS效应   总被引:1,自引:0,他引:1  
随着大量有关表面增强拉曼散射 (SERS)的实验和理论研究的开展 ,金属纳米粒子作为一类重要的 SERS增强介质 ,已引起了人们浓厚的研究兴趣 [1] .而 Au和 Ag作为最常用的活性基底物质 ,更是研究的热点 [2 ,3 ] .最近 ,美国印第安那大学的 Nie等 [4 ] 在单个银纳米粒子上 ,观察到高达 1 0 14 ~ 1 0 15的SERS因子 .同时 ,他们的另外一项工作表明银纳米粒子的形状和大小对 SERS活性有很大影响 [5] .但是 ,由于 Ag溶胶制备的重复性较差 ,且粒度分布不均匀 ,通过控制银颗粒大小而调控 SERS活性是相当困难的[6] .与 Ag相比 ,Au在可见光…  相似文献   

18.
Heavily boron-doped diamond electrode has been applied as a robust substrate for Pt based catalyst. However, by simply applying a planar electrode the effective surface area of the catalyst is limited. In this article we for the first time prepared vertically aligned Pt-diamond core-shell nanowires electrode in a convenient and scalable method (up to 6-inch wafer size). The diamond nanowires are first fabricated with reactive ion etching with metal nanoparticles as etching masks. The following Pt deposition was achieved by DC sputtering. Different amounts of Pt were coated on to the nanowires and the morphology of the core-shell wires is characterized by SEM and TEM. The catalytic oxygen/hydrogen adsorption/desorption response are characterized by cyclic voltammetry. The results show that the active Pt surface area is 23 times higher than a planar Pt electrode, and 4.3 times higher than previously reported on Pt nanoparticles on diamond by electro-deposition. Moreover, this highly active surface is stable even after 1000 full surface oxidation and reduction cycles.  相似文献   

19.
Li  Xiaokun  Zhang  Chunmei  Du  Cheng  Zhuang  Zhihua  Zheng  Fuqin  Li  Ping  Zhang  Ziwei  Chen  Wei 《中国科学:化学(英文版)》2019,62(3):378-384
To design efficient and low-cost core-shell electrocatalysts with an ultrathin platinum shell, the balance between platinum dosage and durability in acid solution is of great importance. In the present work, trimetallic Au@PdPt core-shell nanoparticles(NPs)with Pd/Pt molar ratios ranging from 0.31:1 to 4.20:1 were synthesized based on the Au catalytic reduction strategy and the subsequent metallic replacement reaction. When the Pd/Pt molar ratio is 1.19:1(designated as Au@Pd_(1.19) Pt_1 NPs), the superior electrochemical activity and stability were achieved for oxygen reduction reaction(ORR) in acid solution. Especially, the specific and mass activities of Au@Pd_(1.19) Pt_1 NPs are 1.31 and 6.09 times higher than those of commercial Pt/C catalyst. In addition, the Au@Pd_(1.19) Pt_1 NPs presented a good durability in acid solution. After 3000 potential cycles between 0.1 and 0.7 V(vs. Ag/AgCl), the oxygen reduction activity is almost unchanged. This study provides a simple strategy to synthesize highperformance trimetallic ORR electrocatalyst for fuel cells.  相似文献   

20.
金晟中  张爱清 《应用化学》2018,35(2):239-244
采用连续多元醇法,以RuCl3·xH2O和PtCl2为前驱体,乙二醇为还原剂,聚乙烯吡咯烷酮为稳定剂的反应体系,并通过调节PtCl2用量和还原温度成功制备了壳层厚度约为1.5个Pt原子层的单分散Ru@Pt核壳结构纳米粒子,利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等分析方法对其微观结构、粒径分布、晶型结构、物相组成进行了表征。 结果表明,该纳米粒子分布均匀且基本为球形,平均粒径约为3.57 nm,其中内核直径约为2.49 nm,外壳厚度约为0.55 nm,壳层金属Pt具有很好的晶型,Pt原子主要为{111}晶面,内核金属Ru与外壳金属Pt互相产生了电子效应使Pt的衍射峰和Ru、Pt的电子结合能产生了一定偏移,并初步研究了有效控制该核壳结构纳米粒子壳层厚度和增强核与壳两种金属之间电子效应的因素,使其有望在催化等领域发挥潜在的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号