首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Isotopic compositions of the strange Xenon components-HL and the s-type xenon can be explained in a straightforward manner as due to the alteration of the isotopic composition of xenon caused by a combined effect of (a) mass-fractionation, (b) spallation and (c) stellar-temperature neutron-capture reactions. As much as 42.49% of total 136Xe ( 136Xe) found in the Allende diamond inclusions is 244Pu fission xenon (136fXe) and the trapped xenon is severely mass-fractionated in such a manner that the lighter xenon isotopes are systematically depleted relative to the heavier isotopes. The relative abundances of 130Xe and 132Xe in the trapped xenon component are both markedly enhanced indicating that it was irradiated with a total flux of 1.2·1023 n·cm-2 of stellar-temperature (10 keV) neutrons. The xenon found in the s-type xenon, on the other hand, resemble that of the atmospheric xenon irradiated with a total flux of about 6.0·1023 n·cm-2 of 10 keV neutrons. These results indicate that we are seeing here the effects of nuclear processes occurring inside of a star, such as the exploding supernova.  相似文献   

2.
Targets of isotopically enriched 170Er (erbium) were prepared on 45 μg/cm2 carbon backing using the method of vacuum evaporation. Another layer of carbon with thickness 23 μg/cm2 was deposited on it as a protective cap with the help of an electron gun. Carbon backing, Er and the capping carbon layer were deposited using resistive heating and electron gun deposition without disturbing the vacuum. The thickness of 170Er was measured by X-ray fluorescence analysis as well as with Rutherford backscattering spectrometry and it was found to be 150 μg/cm2. Successful preparation of sandwiched targets was very sensitive to substrate temperature, deposition rate, duration of in situ annealing, cooling rate etc.  相似文献   

3.
The mechanism and kinetics of energy transfer from the Xe(6s[3/2]1) resonance state to CO and CO2 molecules have been investigated by XeCl(B–X) (λmax=308 nm) fluorescence intensity measurements at stationary conditions in Xe–CCl4–M systems. Steady-state analysis of the fluorescence intensity dependence on the xenon and M pressure at constant CCl4 concentration shows that these processes occur in two- and three-body reactions: Xe(6s[3/2]10)+M→products; Xe(6s[3/2]10)+M+Xe→products. The two-body rate constants for above reactions have been found to be (0.7±0.2)×10−10 and (4.9±0.4)×10−10 cm3 s−1 for CO and CO2, respectively. The three-body rate constants have been found to be (3±1)×10−29 and (2.4±0.3)×10−28 cm6 s−1 for CO and CO2, respectively. It has been shown that the third order reaction is a very effective channel of xenon excited atoms decay at high xenon pressures (P(Xe)>50 Torr).  相似文献   

4.
The 82Sr/82Rb radionuclide generator is used very commonly in positron emission tomography. ALICE/ASH and TALYS 1.0 codes were used to calculate excitation functions for proton, alpha and 3He induced on various targets that lead to produce 82Sr radioisotope using intermediate energy accelerators. Recommended thickness of the targets according to SRIM code was premeditated. The application of those data, particularly in the calculation of integral yields, is discussed and theoretical integral yields for any reaction were computed. To consider precision of TALYS 1.0 code calculations, 85Rb(p,4n)82Sr process was determined as most interesting one due to radionuclide purity. The TALYS 1.0 code predicts a maximum cross-section of about 130 mb at 47 MeV for this reaction. Rubidium chloride deposition on copper substrate was carried out via sedimentation method in order to produce 82Sr. 2.98 g RbCl, 1.043 g ethyl cellulose, 10 mL acetone were used to prepare a layer of enriched rubidium chloride of 11.69 cm2 area and 0.34 g/cm2 thickness.  相似文献   

5.
Frying oils were studied by Fourier-transform infrared (FT-IR) spectroscopy, in the range 4,000–200 cm?1, at different temperatures, in the liquid and solid states. The infrared spectrum at 15 °C was similar to that at 200 °C. The band at 730 cm?1 which was assigned to the rocking mode of (–CH2) disappeared at higher temperature because of the rotational isomerism which occurred in the oil structure. The activation energy (E a) of the disappearing (–CH2) band, calculated by use of the chemical dynamic method using the Arrhenius equation, is 8.45 kJ mol?1. The enthalpy difference (ΔH) between the two rotational isomer bands of the conformational structures of the oil at 730 and 1,790 cm?1, at different high temperatures, was also calculated, by use of the Van’t Hoff equation; the value obtained was ?10.85 kJ mol?1.  相似文献   

6.
Nickel-substituted layered perovskite PrBaCo2 ? x Ni x O5 + δ (PBCN) powders with various proportions of nickel (x?=?0, 0.1, 0.2, and 0.3, abbreviated as PBCN-0, PBCN-1, PBCN-2, and PBCN-3, respectively) are investigated as potential cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) based on the yttria-stabilized zirconia (YSZ) electrolyte. It is found that PBCN-1 has the highest electrical conductivity of 1,397 S cm?1 at 400 °C. Substitution of Co by Ni decreases the thermal expansion coefficient (TEC) clearly. The average TEC at the temperature range of 35–900 °C decreases from 22.8?×?10?6 K?1 for PBCN-0 to 18.9?×?10?6 K?1 for PBCN-3. The polarization resistances of PBCN samples on YSZ electrolyte at 800 °C are 0.053, 0.048, 0.052, and 0.042 Ω cm2 for PBCN-0, PBCN-1, PBCN-2, and PBCN-3, respectively. The single fuel cell with the configuration of PBCN-3/YSZ/Pt delivers the highest power densities of 100, 185, 360, 495, and 660 mW cm?2 at 600, 650, 700, 750, and 800 °C, respectively.  相似文献   

7.
The molybdenum targets of 2–10 mg/cm2 have been prepared on Al and Ti backings by centrifugal sedimentation. The thickness and purity of the produced targets were analysed with Rutherford back scattering measurements, scanning electron microscope and energy dispersive spectrometry. Targets were requested for pilot studies of an alternative accelerator way of 99mTc production. Targets were tested with deuteron beam of 20 MeV energy and 10 nA intensity. They were irradiated for 10 min and showed no damage what proofed the targets suitability for irradiation with a weak beam of light projectiles.  相似文献   

8.
For targets requiring thick backing foils, the straight-forward and usual method is to deposit the target material directly on the backing by thermal evaporation. In some instances the reverse is more desirable, adding a backing to an already existing target foil, for example. A recent study involving measurement of the lifetime of the first 2+ excited state in 36Ar by the Doppler shift attenuation method required 0.5 mg/cm2 natural carbon targets on thick (18 mg/cm2) gold and lead backings. Problems of delamination had arisen after beam irradiation using thick gold backings for these experiments. Carbon target foils were then prepared by mechanical rolling in direct contact with a thick lead backing using an intermediate layer of indium to assure good adhesion of the layers. Details of the method will be discussed.  相似文献   

9.
The decomposition of protein molecules from a mixed-protein solution on the surface of calcium hydroxyapatite (CaHap) and Ti(IV)-doped CaHap (TiHap) particles with a Ti/(Ca + Ti) atomic ratio (X Ti) of 0.10 and 0.20 under UV irradiation of 365 nm in wavelength was investigated. Acidic bovine serum albumin (BSA) and basic lysozyme (LSZ) were employed as a model of pathogenic proteins. The photocatalytic activities of TiHap particles were estimated from the decomposition of BSA and LSZ from the BSA (2.5 mg/cm3)–LSZ(1.0 mg/cm3) mixture under 1 mW/cm2 UV irradiation dispersed in a 10-mL quartz tube. No change in BSA concentration by UV irradiation was observed for all the unheated original CaHap and TiHap particles without and with low photocatalytic activities, respectively. Similar results were observed for the systems that employed heat-treated particles endowed a high photocatalytic activity by heat treatment at 650 °C for 1 h. On the other hand, a selective photocatalytic decomposition was observed for the LSZ, i.e., only LSZ molecules were decomposed completely from the BSA (2.5 mg/cm3)–LSZ(1.0 mg/cm3) mixture by using heat-treated TiHap particles with X Ti?=?0.10 and 0.20. This selective decomposition by TiHap particles was interpreted by higher adsorption affinity of positively charged LSZ to highly negatively charged TiHap together with low molecular weight and rigid structure of LSZ molecules.  相似文献   

10.
The IR spectra (50–4000 cm?1) of gaseous and solid cyclobutylamine and cyclobutylamine-N-d2 and the Raman spectra (25–4000 cm?1) of gaseous, liquid and solid cyclobutylamine and cyclobutylamine-N-d2 have been recorded. Depolarization values were measured for both the gaseous and liquid states. Most of the thirty-six fundamental vibrations have been assigned and support for more than one molecular configuration is presented. In the low frequency region for the “light” compound, a series of four Q-branches have been assigned to transitions between energy levels of the ring-puckering vibration for the equatorial isomer. The transitional frequencies were fitted to an asymmetric single-minimum potential function of the form: V(X) = 0.474 × 106X4 - 0.204 × 105X2 + 0.993 × 105X3 with a reduced mass of 160 amu. The following torsional potential constants were determined for the “light” molecule- V1 = 77.8 ± 17.0 cm?1, V3 = 784.0 ± 3.3 cm?1. The trans conformation was found to be more stable than the gauche form by approximately 58 cm?1 (0.17 kcal mol?1). The barriers to trans-gauche, gauche-trans, and gauche-gauche interconversion are 803, 745 and 803 cm?1, respectively.  相似文献   

11.
Morphological and thermodynamic transitions in drugs as well as their amorphous and crystalline content in the solid state have been distinguished by thermal analytical techniques, which include dielectric analysis (DEA), differential scanning calorimetry (DSC), and macro-photomicrography. These techniques were used successfully to establish a structure versus property relationship with the United States Pharmacopeia standard set of active pharmaceutical ingredient (API) drugs. A distinguishing method is the DSC determination of the amorphous and crystalline content which is based on the fusion properties of the specific drug and its recrystallization. The DSC technique to determine the crystalline and amorphous content is based on a series of heat and cool cycles to evaluate the drugs ability to recrystallize. To enhance the amorphous portion, the API is heated above its melting temperature and cooled with liquid nitrogen to ?120 °C (153 K). Alternatively a sample is program heated and cooled by DSC at a rate of 10 °C min?1. DEA measures the crystalline solid and amorphous liquid API electrical ionic conductivity. The DEA ionic conductivity is repeatable and differentiates the solid crystalline drug with a low conductivity level (10?2 pS cm?1) and a high conductivity level associated with the amorphous liquid (10pS cm?1). The DSC sets the analytical transition temperature range from melting to recrystallization. However, analysis of the DEA ionic conductivity cycle establishes the quantitative amorphous and crystalline content in the solid state at frequencies of 0.10–1.00 Hz and to greater than 30 °C below the melting transition as the peak melting temperature. This describes the “activation energy method.” An Arrhenius plot, log ionic conductivity versus reciprocal temperature (K?1), of the pre-melt DEA transition yields frequency dependent activation energy (E a, J mol?1) for the complex charging in the solid state. The amorphous content is inversely proportional to the E a where the E a for the crystalline form is higher and lower for the amorphous form with a standard deviation of ±2%. There was a good agreement between the DSC crystalline melting, recrystallization, and the solid state DEA conductivity method with relevant microscopic evaluation. An alternate technique to determine amorphous and crystalline content has been established for the drugs of interest based on an obvious amorphous and crystalline state identified by macro-photomicrography and compared to the conductivity variations. This second “empirical method” correlates well with the “activation energy” method.  相似文献   

12.
《Analytical letters》2012,45(16):2597-2609
A multistep infrared macro-fingerprint method was applied to identify two Chinese herbal drugs, Rhizoma Curcumas Longae (RCL) and Radix Curcumae (RC). Fourier transform infrared (FT-IR) spectra of the two were similar to each other and consistent with the 11 peaks of the spectrum of starch. RCL had a characteristic absorption peak at approximately 1514 cm?1 that correlated to the strong peak near 1509 cm?1 of curcumin. Between 900 cm?1–1700 cm?1 of the second derivative infrared (SD-IR) spectra, with higher resolution, RCL, and curcumin had 10 common peaks. In the FT-IR and SD-IR spectra of the ethanol extract, the spectra of the RCL extract and curcumin were similar, but RC was different. According to the fingerprint characteristics of the infrared spectra for RC and its extracts, the strongest peak at 1055 cm?1; the C-O absorption peaks at 1124 cm?1, 1106 cm?1, and 996 cm?1; and the strong methylene peaks at 2925 cm?1 and 2853 cm?1 suggest that RC contains more saccharides. In the range of 1350 cm?1–1700 cm?1, RCL and RC had similar two-dimensional infrared (2D-IR) correlation spectra. Both of them had three autopeaks, but the autopeaks were located at 1458 cm?1, 1560 cm?1, and 1641 cm?1 for RCL and 1458 cm?1, 1560 cm?1, and 1669 cm?1 for RC, suggested that the aromatic components of the two were not identical. The average correlation for the 18 RCL and 18 RC samples were 0.9906 and 0.9878, respectively, and this method achieves a good classification of the sample type.  相似文献   

13.
Substitution of each phenyl in 1,3,5-triphenyl-6-oxoverdazyl with three alkoxy groups induces an ordered columnar hexagonal phase (Colh(o)) below 130°C in 1b[n], while in the alkylsulfanyl analogues 1a[n] additional periodicity along the columns was found rendering the phase a true three-dimensional columnar hexagonal phase (Colh(3D)) below 60°C. Both series exhibit broad absorption bands in the visible region with maxima at 540 and 610 nm in series 1a[n] and at 486 and 614 nm in series 1b[n]. Unusual reversible thermochromism is observed in series 1b[n], in which the dark green isotropic phase turns red in the discotic phase. Analysis of 1a[8] revealed redox potentials E0/+11/2 = +0.99 V and E0/ ?11/2 = –0.45 V vs. saturated calomel electrode (SCE), while the potentials in the alkoxy analogue 1b[8] are shifted cathodically by 0.16 V. Photovoltaic studies of 1a[8] demonstrated hole mobility of μh = 1.52 × 10?3 cm2 V?1 s?1 in the mesophase with an activation energy Ea = 0.06 ± 0.01 eV. Magnetisation studies of 1a[8] revealed nearly ideal paramagnetic behaviour in either the solid or fluid phase above 200 K and weak antiferromagnetic interactions at low temperatures. In contrast, a noticeable drop of about 4% in μeff was observed during the I→Col phase transition in 1b[8], which coincide with the thermochromic effect.  相似文献   

14.
A series of catalysts (g-C3N4@MWCNTs/Mn3O4) were prepared from g-C3N4, MWCNTs, and Mn3O4 for oxygen reduction reaction (ORR) in zinc–air batteries. From the half-cell tests, the loading of 35 % Mn3O4 (sample GMM35) presents an excellent activity toward ORR in alkaline condition. Rotating ring-disk electrode (RRDE) studies reveal that 3.6~3.8 electrons are transferred with a H2O2 yield of 11.4 % at ?0.4 V. Meanwhile, the GMM35 nanocomposite exhibits the same durability as commercial 20 wt% Pt/C in alkaline condition, but it shows lower peak power density (192.4 mW cm?2 at 229.1 mA cm?2) and cell voltage than those with a commercial Pt/C catalyst (260.9 mW cm?2 at 285.4 mA cm?2).  相似文献   

15.
Thin self-supporting 123Sb targets were needed for studies using GAMMASPHERE investigating transverse wobbling in the highly-deformed triaxial nucleus 135Pr. The experiment was carried out using the 123Sb(16O,4n)135Pr reaction with the 80 MeV 16O beam provided by the ATLAS accelerator facility. In particle–particle coincidence measurements 121Sb targets were irradiated with a 332 MeV 28Si beam from ATLAS to measure evaporation residues and fission. The antimony targets were prepared self-supporting by the method of physical vapor deposition onto polished glass substrates or on various backing materials. Target thicknesses on the order of 500–1,000 μg/cm2 were obtained and used for the experiments. Details of the target production and performance in beam will be discussed.  相似文献   

16.
Three phase change paraffinic materials (PCMs) were thermophysically (phase-transition temperatures, latent heat, heat capacity at constant pressure, density, and thermal conductivity) investigated in order to be used as latent heat storage media in a pilot plant developed in Plovdiv Bulgaria. Raman structural investigation probes aliphatic character of the E53 sample, while the E46 and ECP samples contain also unsaturated components due to their Raman features within 1,500–1,700 cm?1 range. Orthorhombic structure of the three PCMs was evidenced by the Raman modes at the 1,417 cm?1. The highest latent heat value, ΔH, of phase transitions among the three materials was represented by summation of a solid order–disorder, and melting latent heat was encountered by the E53 paraffin, i.e., 194.32 J g?1 during a μ-DSC scan of 1 °C min?1. Conversely, the ECP composite containing ceresin component shows the lowest latent heat value of 143.89 J g?1 and the highest thermal conductivity of 0.46 W m?1 K?1 among the three phase change materials (PCMs). More facile melt-disordered solid transition with the activation energy of 525.45 kJ mol?1 than the lower temperature transition of disorder–order (E a of 631.73 kJ mol?1) during the two-step process of solidification for the E53 melt are discussed in terms of structural and molecular motion changes.  相似文献   

17.
A radiotracer gas with a blend of 37Ar and 127Xe was created for a gas migration experiment and was characterized at Pacific Northwest National Laboratory using ultra-low-background proportional counters. This paper describes the direct low-energy measurement of 37Ar and 127Xe in a dual-isotope sample. Using this low-energy technique, the dual-isotope radiotracer gas was determined to have activity concentrations of 483 Bq/cc and 1435 Bq/cc for 37Ar and 127Xe, respectively, and a ratio of 1:3 on the reference date of 7/11/2016.  相似文献   

18.
A new class of hybrid nanocomposite membranes containing poly(vinyl alcohol) (PVA), phosphotungstic acid (PWA), 3-glycidyloxypropyltrimethoxysilane (GPTMS), 3-mercaptopropyltrimethoxysilane (MPTMS) and glutaraldehyde (GA) were prepared by a sol–gel method. The aim of this research study was to investigate these novel and highly proton-conducting membranes including their properties, and performances for proton exchange membrane fuel cells (PEMFCs) operating at low temperature. 'Swelling' was observed at room temperature for all the composites. The manner in which the conductivity depended on temperature and humidity was determined and a maximum conductivity value of 2.5?×?10?2 S cm?1 was found at a 140°C and 30 % relative humidity (RH) for the PVA/PWA/GPTMS/MPTMS/P2O5/GA (50/5/15/10/10/10 wt.%) hybrid composite membrane. It was suggested that the conductivity depended strongly on the nature of the organic/inorganic components as well as on the acid concentration. X-ray diffraction (XRD) results demonstrated that this membrane had an amorphous phase, and Fourier transform infrared spectroscopy (FTIR) results confirmed the composite formation. Finally, membrane-electrode assemblies with a loading of 0.1 mg cm?2 of Pt/C on a prepared electrode gave rise to a current density of 309 mA cm?2 at 0.5 V.  相似文献   

19.
Here a novel material for methane adsorption was synthesized and studied, which is a graphene-like two-dimensional (2D) carbide (Ti2C, a member of MXenes), formed by exfoliating Ti2AlC powders in a solution of lithium fluoride (LiF) and hydrochloric acid (HCl) at 40 °C for 48 h. Based on first-principles calculation, theoretically perfect Ti2C with O termination has a specific surface area (SSA) of 671 m2 g?1 and methane storage capacity is 22.9 wt%. Experimentally, 2.85 % exfoliated Ti2C with mesopores shown methane capacity of 11.58 cm3 (STP: 0 °C, 1 bar) g?1 (0.82 wt%) under 5 MPa and the SSA was 19.1 m2 g?1. For Ti2C sample intercalated with NH3·H2O, the adsorbed amount was increased to 16.81 cm3 (STP) g?1 at same temperature. At the temperature of 323 K, the adsorbed amount of as-prepared Ti2C was increased to 52.76 cm3 (STP) g?1. For fully exfoliated Ti2C, the methane capacity was supposed to be 28.8 wt% or 1148 V (STP)v?1. Ti2C theoretically has much larger volume methane capacity than current methane storage materials, though its SSA is not very high.  相似文献   

20.
Molecular inclusion complexes of usnic acid (UA) with β-cyclodextrin (β-CD) and 2-hydroxypropyl β-cyclodextrin (HP β-CD) were prepared by the co-precipitation method in the solid state in the molar ratio of 1:1. Structural complexes characterization was based on different methods, FTIR, 1H NMR, XRD and DSC. Parallel to the complex by the above methods, corresponding physical mixtures of UA with cyclodextrins and complexing agents (β-CD, HP β-CD and UA) were analyzed. The results of DSC analysis showed that, at around 200 °C, the endothermal peak in the complexes with cyclodextrins originating from the UA melting has disappeared. Complex diffractogram patterns do not contain peaks characteristic for the pure UA. They are more appropriate to cyclodextrin diffractogram. This fact points to the molecular encapsulation of UA in the cyclodextrin cavity. Chemical shifts in 1H NMR spectra after the inclusion of UA into the cyclodextrin cavity, especially H-3 protons (0.0012 and 0.0102 ppm in the β-CD and HP β-CD, respectively) and H-5 and H-6 (0.0134 ppm) and hydrogen from CH3 (0.0073 ppm) HP β-CD also points to the formation of molecular inclusion complexes. The improved solubility of UA in water was achieved by molecular incapsulation. In the complex with β-CD the solubility is 0.3 mg/cm3, with HP β-CD 4.2 mg/cm3 while the uncomplexed UA solubility is 0.06 mg/cm3. The microbial activity of UA and both complexes was tested against eight bacteria and two fungi and during the test no reduced activity of UA in the complexes was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号