首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss differential– versus integral–equation based methods describing out–of thermal equilibrium systems and emphasize the importance of a well defined reduction to statistical observables. Applying the projection operator approach, we investigate on the time evolution of expectation values of linear and quadratic polynomials in position and momentum for a statistical anharmonic oscillator with quartic potential. Based on the exact integro-differential equations of motion, we study the first and naive second order approximation which breaks down at secular time-scales. A method is proposed to improve the expansion by a non–perturbative resummation of all quadratic operator correlators consistent with energy conservation for all times. Motion cannot be described by an effective Hamiltonian local in time reflecting non-unitarity of the dissipative entropy generating evolution. We numerically integrate the consistently improved equations of motion for large times. We relate entropy to the uncertainty product, both being expressible in terms of the observables under consideration. Received: 21 July 1998 / Revised version: 28 September 1998 / Published online: 2 November 1998  相似文献   

2.
We investigate the dynamics of a quantum particle moving in a tight-binding lattice and coupled to a heat bath environment. Using the Feynman-Vernon influence functional method, we obtain an exact series representation in powers of the tunneling matrix for the generating functional of moments of the probability distribution which is valid for arbitrary temperatures and linear dissipation. We prove that the Einstein relation between the linear mobility and the diffusion coefficient holds to any order of the expansion for Ohmic, and for a restricted region of super-Ohmic dissipation. We also compute in the Ohmic case the mobility in certain regions of the parameter space. In particular, we find that the low temperature correction to the zero temperature mobility behaves asT 2, and we also determine the prefactor. Finally, the exact solution of the dynamics for any times, temperatures and bias is presented for a particular value of the damping strength in the case of strict Ohmic dissipation.  相似文献   

3.
4.
We analyze the real-time dynamics of a quantum two-state system in the presence ofnonequilibrium quantum fluctuations. The latter are generated by a coupling of thetwo-state system to a single electronic level of a quantum dot which carries anonequilibrium tunneling current. We restrict to the sequential tunneling regime andcalculate the dynamics of the two-state system, of the dot population, and of thenonequilibrium charge current on the basis of a diagrammatic perturbative method valid fora weak tunneling coupling. We find a nontrivial dependence of the relaxation and dephasingrates of the two-state system due to the nonequilibrium fluctuations which is directlylinked to the structure of the unperturbed central system. In addition, aHeisenberg-Langevin-equation of motion allows us to calculate the correlation function ofthe nonequilibrium fluctuations. By this, we obtain a generalized nonequilibriumfluctuation relation which includes the equilibrium fluctuation-dissipation theorem in thelimit of zero transport voltage. A straightforward extension to the case with atime-periodic ac voltage is shown.  相似文献   

5.
6.
In this paper, we formulate limit Zeno dynamics of general open systems as the adiabatic elimination of fast components. We are able to exploit previous work on adiabatic elimination of quantum stochastic models to give explicitly the conditions under which open Zeno dynamics will exist. The open systems formulation is further developed as a framework for Zeno master equations, and Zeno filtering (that is, quantum trajectories based on a limit Zeno dynamical model). We discuss several models from the point of view of quantum control. For the case of linear quantum stochastic systems, we present a condition for stability of the asymptotic Zeno dynamics.  相似文献   

7.
We combine a quantum dynamical propagator that explicitly accounts for quantum mechanical time ordering with optimal control theory. After analyzing its performance with a simple model, we apply it to a superconducting circuit under so-called Pythagorean control. Breakdown of the rotating-wave approximation is the main source of the very strong time-dependence in this example. While the propagator that accounts for the time ordering in an iterative fashion proves its numerical efficiency for the dynamics of the superconducting circuit, its performance when combined with optimal control turns out to be rather sensitive to the strength of the time-dependence. We discuss the kind of quantum gate operations that the superconducting circuit can implement including their performance bounds in terms of fidelity and speed.  相似文献   

8.
We propose a new mechanism, parallel quantum Zeno dynamics, to dissipatively prepare all Bell entangled states of the twoqubit system in the context of cavity quantum electrodynamics. This mechanism can provide two transition channels between ground states and two different dark states simultaneously, which efficiently speeds up the stabilization of the entanglement and suppresses the adverse influence of surrounding environments. In addition, there is no need for the initialization of quantum states and the Clauser-Horne-Shimony-Holt inequality can be violated in a finite temperature bath. The experimental feasibility is also studied by the state-of-the-art technique and a high fidelity about 99% can be achieved.  相似文献   

9.
The dynamics for a system of hard spheres with dissipative collisions is described at the levels of statistical mechanics, kinetic theory, and simulation. The Liouville operator(s) and associated binary scattering operators are defined as the generators for time evolution in phase space. The BBGKY hierarchy for reduced distribution functions is given, and an approximate kinetic equation is obtained that extends the revised Enskog theory to dissipative dynamics. A Monte Carlo simulation method to solve this equation is described, extending the Bird method to the dense, dissipative hard-sphere system. A practical kinetic model for theoretical analysis of this equation also is proposed. As an illustration of these results, the kinetic theory and the Monte Carlo simulations are applied to the homogeneous cooling state of rapid granular flow.  相似文献   

10.
We theoretically study the dipolar motion of bosonic atoms in a very shallow, strongly confined 1D optical lattice using the parameters of the recent experiment [C. D. Fertig, Phys. Rev. Lett. 94, 120403 (2005)]. We find that, due to momentum uncertainty, a small, but non-negligible, atom population occupies the unstable velocity region of the corresponding classical dynamics, resulting in the observed dissipative atom transport. This population is generated even in a static vapor, due to quantum fluctuations which are enhanced by the lattice and the confinement, and is not notably affected by the motion of atoms or finite temperature.  相似文献   

11.
We show that the time evolution of an open quantum system, described by a possibly time dependent Liouvillian, can be simulated by a unitary quantum circuit of a size scaling polynomially in the simulation time and the size of the system. An immediate consequence is that dissipative quantum computing is no more powerful than the unitary circuit model. Our result can be seen as a dissipative Church-Turing theorem, since it implies that under natural assumptions, such as weak coupling to an environment, the dynamics of an open quantum system can be simulated efficiently on a quantum computer. Formally, we introduce a Trotter decomposition for Liouvillian dynamics and give explicit error bounds. This constitutes a practical tool for numerical simulations, e.g., using matrix-product operators. We also demonstrate that most quantum states cannot be prepared efficiently.  相似文献   

12.
A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of the system is established. The recovery time is the longest for the maximal excitation level.  相似文献   

13.
14.
We study pattern formation in periodic systems with conserved dynamics driven by both thermally sustained flux and external (athermal) flux. Assuming the stochastic nature of each kind of flux we discuss noise induced patterning with competing stochastic dynamics in the framework of the modulated phase field method. Analytical results obtained within the mean field theory are compared with computer simulations.  相似文献   

15.
The spatiotemporal dynamics of radiation in wide-aperture semiconductor quantum-dot lasers is studied analytically and numerically. It was found that the choice of relatively rapid amplifying layers with quantum dots of a small size and slow absorbing layers with a maximal rate of exciton capture from wetting layers is optimal for the stability of spatial dissipative solitons in a single-longitudinal-mode laser. A large relaxation time of the slow absorber was found to result in a substantial decrease in the sensitivity of solitons to the tilt of the mirrors, which increases their stability and gives real chances of the experimental revealing of laser solitons.  相似文献   

16.
The purpose of this work is to understand the effect of an external environment on the adiabatic dynamics of a quantum critical system. By means of scaling arguments we derive a general expression for the density of excitations produced in the quench as a function of its velocity and of the temperature of the bath. We corroborate the scaling analysis by explicitly solving the case of a one-dimensional quantum Ising model coupled to an Ohmic bath.  相似文献   

17.
We show how to organize the set of periodic orbits of dynamical systems exhibiting deterministic diffusion into a cycle expansion giving the diffusion coefficient D. This expansion is used to derive analytically D for a class of such dynamical systems.  相似文献   

18.
19.
The paper discusses the reconstruction of potentials for quantum systems at finite temperatures from observational data. A nonparametric approach is developed, based on the framework of Bayesian statistics, to solve such inverse problems. Besides the specific model of quantum statistics giving the probability of observational data, a Bayesian approach is essentially based on a priori information available for the potential. Different possibilities to implement a priori information are discussed in detail, including hyperparameters, hyperfields, and non-Gaussian auxiliary fields. Special emphasis is put on the reconstruction of potentials with approximate periodicity. Such potentials might for example correspond to periodic surfaces modified by point defects and observed by atomic force microscopy. The feasibility of the approach is demonstrated for a numerical model. Received 29 May 2000 and Received in final form 16 August 2000  相似文献   

20.
Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain a nonperturbative expression for the sticking rate. We find that for weak dissipative coupling α, the low-energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The sticking probability for a neutral particle with incident energy E→0 behaves asymptotically as s~E((1+α)/2(1-α)); for a charged particle, we obtain s~E(α/2(1-α)). Thus, "quantum mirrors"-surfaces that become perfectly reflective to particles with incident energies asymptotically approaching zero-can also exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号