首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this research was to investigate the effect of different clay composition and concentrations on the thermal behaviour and kinetics of heavy crude oil in limestone matrix by thermogravimetry (TG/DTG). In TG/DTG experiments, three distinct reaction regions were identified in all of the crude oil + limestone mixture known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO) respectively. Addition of clay to porous matrix significantly affected the reaction regions. Significant reduction of activation energy due to addition of clay to crude oil indicates the catalytic effect of clay on crude oil combustion.  相似文献   

2.
The main objective of this work was to create a kinetic model of refinery vacuum residue hydrocracking and to monitor the impact of the operating conditions on the product yields. Data and yield measurements were gathered from a residual hydrocracking unit (RHC). Reaction temperature ranged from 401°C to 412°C at the pressure of 18–20 MPa. A simplified kinetic yield model was applied; where the feed and each product fraction are represented by one lump (reactant or product of cracking) represented by the number of pseudo-components. The product fractions were determined by fractional distillation of the output mixture from the reactor. The kinetic model includes eight reaction steps and the following six fractions: vacuum residue, vacuum distillate, gas oil, kerosene, naphtha, and gas. In addition, a model for hydrodesulphurisation has been proposed. The average relative deviation between model and experimental yields was 5.36 %, and that for the sulphur conversion model was 1.04 %. An Excel file with the kinetic model was implemented in the Aspen Plus program using a user-defined model of the reactor. This model allows to input/output data between the Aspen Plus and Excel programs. The Excel subroutine calculates the reaction kinetics of cracking from the set temperature and residence time, and distributes the products into 30 pseudo-components created in the Aspen Plus program. The remaining part of the RHC unit was simulated in the Aspen Plus environment. The effects of the reaction conditions such as temperature and residence time on the conversion of the feed and on the distillation curves of the output mixture from the reactor were investigated. The model was verified by comparison of the distillation curves of simulated and real products.  相似文献   

3.
In this research, thermal characterization and kinetics of Karakus crude oil in the presence of limestone matrix is investigated. Thermogravimetry (TG/DTG) is used to characterize the crude oil in the temperature range of 20-900°C, at 10°C min -1 heating rate using air flow rate of 20 mL min -1. In combustion with air, three distinct reaction regions were identified known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). Five different kinetic methods used to analyze the TG/DTG data to identify reaction parameters as activation energy and Arrhenius constant. On the other hand different f(α) models from literature were also applied to make comparison. It was observed that high temperature oxidation temperature (HTO) activation energy of Karakus crude oil is varied between 54.1 and 86.1 kJ mol -1, while low temperature oxidation temperature (LTO) is varied between 6.9 and 8.9 kJ mol -1.  相似文献   

4.
This research aimed at the investigation of the effect of formation factors on the light crude oil during the high temperature air injection process. For this purpose, thermogravimetric and Fourier Transform Infrared Spectroscopy techniques were combined to investigate the light crude oil and oil mixed with formation water and sand at 58, 250, and 450 °C, respectively. The results showed that at different temperature range, the mass drop rate presented different trend and the formation water and sand increased the activation energy of the oxidation reaction. The formation sand exhibited the excellent catalytic effect at relative low temperature. The oxygen addition reaction massively was trigged at 250 °C, and the bond scission reaction dominated at 450 °C. With different additives at different temperature range, the type, concentration, and produced timing of the products presented different tendency.  相似文献   

5.
In this work a continuous investigation of the thermal behavior of two heavy crude oils, P2 and P4, from Brazilian basin was performed using simultaneous technique TG-DSC-FTIR. In previous publication—Part 1, about these same oils at nitrogen atmosphere, it was identified for P2 sample that the main evolved component was 1-dodecyl-4-octyl-cyclohexane at 450 °C and for P4 sample the main component was evolved at 340 °C referent to 1-methyl cyclohexene. The simultaneous technique TG/FTIR was also performed for the present study in synthetic air atmosphere and was more elucidative than analysis in nitrogen atmosphere. For heavy oil P2, there was identified the presence of carbon dioxide, carbon monoxide and 4-methylcyclohexanone at 382 °C. Whilst for sample P4 the gaseous components evolved at 454 °C were carbon dioxide, carbon monoxide and 1-methylcyclohexene. Also differences in TG analysis for both samples were observed regarding the number of components. In air atmosphere crude oil P2 exhibited three decomposition stages, in nitrogen were only two. Four stages were exhibited on the thermogravimetric curve for oil P4 in synthetic air, while in nitrogen atmosphere there were three stages. Thus, this study has a unique character regarding the use of combined simultaneous techniques as STA/FTIR to identify components in heavy oil which may contribute to upgrade methods referring to crude oil composition.  相似文献   

6.
This research aimed at the investigation of the effect of different metallic additive on the combustion and kinetic behavior of crude oil. For this purpose, the thermal behavior of the oil-only and oil–metallic salts mixtures were studies by the thermogravimetry (TG)/derivative thermogravimetry and differential scanning calorimetry (DSC) on heating rate at 10 °C min?1. The result shows that Dagang crude oil exhibited apparent low temperature oxidation (LTO), fuel deposition, and high temperature oxidation processes. With the addition of metallic salts, the LTO process has been shortened and samples added CuSO4, CrCl3·6H2O, and AlCl3·6H2O achieved a much lower peak temperature than that of oil. Based on the Arrhenius model, metallic additives were proven to have obvious influence on the combustion activation energy. And, by comprehensive analysis of TG/DSC profile and activation energy, ZnSO4 exhibited a positive influence on light crude oil combustion during the high pressure air injection process.  相似文献   

7.
This research presents the results of an experimental study on the determination of pyrolysis behaviour and kinetics of six crude oils by differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). Crude oil pyrolysis indicated two main temperature ranges where loss of mass was observed. The first region between ambient to 400°C was distillation. The second region between 400 and 600°C was visbreaking and thermal cracking. Arrhenius-type kinetic model is used to determine the kinetic parameters of crude oils studied. It was observed that as crude oils gets heavier (°API decreases) cracking activation energy increases. Activation energy of cracking also show a general trend with asphaltene content. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In this research, non-isothermal kinetics and feasibility study of medium grade crude oil is studied in the presence of a limestone matrix. Experiments were performed at a heating rate of 10°C min−1, whereas the air flow rate was kept constant at 50 mL min−1 in the temperature range of 20 to 600°C (DSC) and 20 to 900°C (TG). In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures, known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The activation energy values were in the order of 5–9 kJ mol−1 in LTO region and 189–229 kJ mol−1 in HTO region. It was concluded that the medium grade crude oil field was not feasible for a self-sustained combustion process.  相似文献   

9.
In this study, two Turkish crude oils from southeastern part of Turkey and their saturate, aromatic, resin fractions were analyzed by differential scanning calorimetry (DSC). The experiments were performed at three different heating rates (5, 10, 15 °C min?1) under air atmosphere. Two different reaction regions were observed from DSC curves due to the oxidative degradation of crude oil components. In the first reaction region, it was deduced that the free moisture, volatile hydrocarbons were evaporated from the crude oils, light hydrocarbons were burned, and fuel was formed. The second reaction region was the main combustion region where the fuel was burned. From DSC curves, it was observed that as the sample got heavier, the heat of the reaction increased. Saturates gave minimum heat of reaction. As the heating rate increased, shift of peak temperatures to high values and extended reaction region intervals were observed. The kinetic analysis of the crude oils and their fractions were also performed using ASTM E-698 and Borchardt and Daniels methods, respectively. Activation energy values of the crude oil samples and the fractions’ high-temperature oxidation region were close to each other and varied between 67 and 133 kJ mol?1 in ASTM and 35 and 154 kJ mol?1 in Borchardt and Daniels methods, respectively.  相似文献   

10.
The thermogravity/Fourier transform infrared (TG/FTIR) system was used to analyze the mechanism and kinetics of the thermal cracking of poly(ether ether ketone) (PEEK) under different environments. The thermal cracking of PEEK in a helium atmosphere showed that there were two stable cracking reaction regions. In the first-stage reaction, the thermal stability of the ketone group in PEEK was thermally more stable than the ether group. The cracking of the fluorenone structure in the carbonization showed it dominated the cracking scheme in the second-stage reaction. The thermal cracking of PEEK in air was governed by a random main-chain-scission and carbonization mechanism that increased with the cracking temperature under the influence of an increased thermal-oxidation mechanism. This mechanism predominated the PEEK solid reaction system until the compound completely was combusted. In air, the solid reaction rate of PEEK that produced a stable fluorenone structure was faster than that in helium and imparted a higher retarding effect on cracking in the initial lower temperature region. By means of the stable average activation energy for the kinetic parameter calculation for the order of reaction and pre-exponential factor, the theoretical TG curve was calculated and found to be identical to the observed TG curve. The kinetic model for thermal cracking of PEEK in air also is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4582–4590, 1999  相似文献   

11.
In this study the combustion characteristics of crude oils (Karakuę and Beykan) in the presence of a limestone matrix were determined using the thermogravimetry (TG/DTG). Experiments were performed at a heating rate of 10°C min-1, whereas the air flow rate was kept constant at 10 L h-1 in the temperature range of 20-900°C. In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures studied known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The individual activation energies for each reaction region may be attributed to different reaction mechanisms, but they do not give any indication of the contribution of each region to the overall reactivity of the crude oils. Depending on the characteristics, the mean activation energy of samples varied between 50.3 and 55.8 kJ mol-1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Thermogravimetric (TG) data of oil sand obtained at Engineering Research Center of Oil Shale Comprehensive Utilization were studied to evaluate the kinetic parameters for Indonesian oil sand samples. Experiments were carried out at heating rates of 5, 15, and 25 °C min?1 in nitrogen, 10, 20, and 50 °C min?1 in oxygen atmosphere, respectively. The extent of char combustion was found out by relating TG data for pyrolysis and combustion with the ultimate analysis. Due to distinct behavior of oil shale during pyrolysis, TG curves were divided into three separate events: moisture release, devolatilization, and evolution of fixed carbon/char, where for each event, kinetic parameters, based on Arrhenius theory, were calculated. Coats–Redfern method, Flynn–Wall–Ozawa method, and distributed activation energy model method have been used to determine the activation energies of degradation. The methods are compared with regard to their characteristics and the ease of interpretation of the thermal kinetics. Activation energies of the samples were determined by three different methods and the results are discussed.  相似文献   

13.
High pressure thermogravimetric analysis (HPTG) was used in order to study the oxidation of crude oil in a porous medium under pressurised conditions for simulation of in-situ combustion during oil recovery. Three distinct reaction regions were observed from the HPTG curves in an oxidising environment subjected to a constant heating rate. These were low temperature oxidation, fuel deposition and high temperature oxidation. The method of Coats and Redfern was used to obtain kinetic parameters and the results are discussed.The authors would like to express their appreciation for the financial support of TUBITAK (The Scientific and Technical Research Council of Turkey) and the Royal Society.  相似文献   

14.
Three typical metal hypophosphite flame retardants La(H2PO2)3·H2O (LHP), Ce(H2PO2)3·H2O (CHP), and Al(H2PO2)3 (AHP) were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis (TG), derivative thermogravimetric analysis, and differential thermal analysis. The thermal degradation products from the synthesized metal hypophosphites were also investigated using thermogravimetry coupled with Fourier transform infrared spectroscopy (TG–FTIR) and thermogravimetry coupled with mass spectrometry (TG–MS). The synthesized metal hypophosphites were also used as flame retardants for poly (1,4-butylene terephthalate) (PBT), and the combustion properties of flame-retarded PBT were evaluated using the limiting oxygen index and UL-94 tests. The results showed that the metal hypophosphites LHP, CHP, and AHP can be used as effective flame retardants for PBT, and these compounds can be obtained through a simple precipitation method. TG–FTIR and TG–MS results showed that the degradation process of AHP involves two steps, corresponding to the removal PH3 reaction and the further dehydration reaction of the hydrogen phosphate aluminum. While LHP and CHP have three degradation steps, the additional step is due to that LHP and CHP which will loss the crystal water at lower temperature.  相似文献   

15.
The present research is focused on the characterisation and comparison of biomass ashes from wood pellet with different thermal histories. One of the ashes is obtained in a muffle furnace until its mass stabilization reaching a temperature of 550 °C, low temperature ash (LTA); the other one came from an experimental fixed bed combustor after 4 h of stable combustion in which the temperature reached is above 1,000 °C, high temperature ash (HTA). The samples were studied using Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) techniques, and they were subjected to a heating up to 900 °C under an inert atmosphere with the objective of perceiving the differences in their thermal behaviour. At these temperatures, complex phase transformations occur, related to decomposition of carbonates and formation of silicates. TG and DSC curves are compared and some differences in mass loss, temperature peaks and enthalpy associated to endothermic effects are detected and they are explained based on the different compositions of both samples obtained at different temperatures. Other techniques were applied for the determination of the chemical composition of the ashes; X-ray fluorescence and Scanning electron microscopy with energy dispersive X-ray spectroscopy showed the elements present in the ashes, and X-ray diffraction revealed the crystalline phases and confirms that LTA is mainly composed of carbonates, while HTA mostly consists of silicates.  相似文献   

16.
ASTM Kinetics of Oil Shales   总被引:1,自引:0,他引:1  
Thermal analysis is increasingly being used to obtain kinetic data relating to sample decomposition. In this research differential scanning calorimeter (DSC) was used to determine the combustion kinetics of three (Çan, Himmetoglu and Mengen) oil shale samples by ASTM and Roger &; Morris methods. On DSC curves two reaction regions were observed on oil shale sample studied except Çan oil shale. In DSC experiments higher heating rates resulted in higher reaction temperatures and higher heat of reactions. Distinguishing peaks shifted to higher temperatures with an increase in heating rate. Three different kinetic models (ASTM I-II and Rogers &; Morris) were used to determine the kinetic parameters of the oil shale samples studied. Activation energies were in the range of 131.8-185.3 kJ mol-1 for ASTM methods and 18.5-48.8 kJ mol-1 for Rogers &; Morris method.  相似文献   

17.
Thermal decomposition of magnesite is investigated by using a TG–MS. Different kinetic methods including Coats–Redfern, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose are used to investigate the thermal decomposition kinetics of magnesite. It was observed that the activation energy values obtained by these methods are similar. The average apparent activation energy is found to be about 203 kJ mol?1. The raw magnesite and its decomposition products obtained at different temperatures are analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The concentration of functional groups, crystal structure and composition, and apparent morphology of decomposition products were studied in detail. The FTIR, XRD, and SEM analyses showed that magnesite was completely decomposed at 973 K to form MgO.  相似文献   

18.
The heating rate effect on the thermal behavior of clays from Arumetsa and Kunda deposits (Estonia) and an illitic clay from Füzérradvány (Hungary) was studied. Experiments were carried out under dynamic heating condition up to 1050 °C at the heating rates of 1.25, 2.5, 5 and 10 °C min?1 in a stream of gas mixture containing 79 % of Ar and 21 % of O2 with Setaram Labsys 1600 analyzer. Two different ashes were used as additives: the electrostatic precipitator ash from the first field and the cyclone ash formed, respectively, at circulating fluidized bed combustion (temperatures 750–830 °C) and pulverized firing (temperatures 1200–1400 °C) of Estonian oil shale at Estonian Power Plant. For calculation of kinetic parameters, the TG data were processed by the differential isoconversional Friedman method. The results of thermal analysis and the variation of the value of activation energy E along the reaction progress α indicated the complex character of decomposition of clays and their blends with Estonian oil shale ashes, and the certain differences in thermal behavior of different clays depending on their origin.  相似文献   

19.
Thermogravimetry in a hydrogen flow is used to distinguish different forms of NiO-Al2O3 bonding at the temperatures of reduction of NiO. The influences of the temperature of preliminary treatment and the component ratio on the shapes of the TG and DTG curves of reduction were represented. By comparison of the results obtained with different weights and with different particle sizes, the influences of diffusion of water vapour in macropores on the characters of TG and DTG curves were studied. Different types of TG and DTG curves of reduction were observed:
  1. Curves usual in thermal analysis, whose positions depend on the specimen weight and on the dispersity of the sample.
  2. Curves whose position displays almost no change with variations of 1–2 orders the specimen weight.
  3. Curves the number of reduction rate peaks in which depend on the experimental conditions.
  相似文献   

20.
Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its attractive advantage in the inherent separation of CO2. In relative to the single metal oxide-based oxygen carrier (OC), combined OC owned superiority for CLC of coal. In this research, combined NiFe2O4 OC was synthesized using sol–gel combustion synthesis method, and its reaction with a typical Chinese high-sulfur coal as Liuzhi (LZ) coal was performed in a thermogravimetric analyzer (TG). And then, systematic investigation was carried out to explore the evolution of sulfur species and minerals involved in coal and their interaction with the reduced NiFe2O4 OC through different means, including fourier transform infrared (FTIR), field scanning electron microscopy/energy-dispersive X-ray spectrometry, X-ray diffraction, and thermodynamic simulation. TG–FTIR analysis of LZ reaction with NiFe2O4 indicated that two reaction stages were experienced at 350–550 and 800–900 °C, respectively, far different from LZ pyrolysis, and SO2 occurred mainly related to oxidization of H2S with NiFe2O4 over 550 °C. Meanwhile, lattice oxygen transfer rates of NiFe2O4 involved at the two reaction stages were higher than that of directly mixed NiO with Fe2O3 OC and thus more beneficial for LZ coal conversion. Both experimental means and thermodynamic simulation of the solid-reduced residues of NiFe2O4 with LZ coal indicated that the main-reduced counterparts of NiFe2O4 were Ni and Fe3O4. In addition, though good regeneration of the reduced NiFe2O4 was reached, the side products Ni3S2 and Ni2SiO4 should be noted as well for its detrimental effect on the reactivity of NiFe2O4 OC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号