首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the solid-state reaction mechanism and kinetics were investigated for production of anhydrous sodium metaborate (NaBO2), an industrially and technologically important boron compound. To assess the kinetics of solid-state production of NaBO2, the chemical reaction between borax (Na2B4O7) and sodium hydroxide (NaOH) was investigated by use of the thermal analysis techniques thermogravimetry (TG) and differential thermal analysis (DTA). DTA curves obtained under non-isothermal conditions at different heating rates (5, 10 and 20 °C/min), revealed five endothermic peaks corresponding to five solid-state reactions occurring at 70, 130, 295, 463, and 595 °C. The stages of the solid-state reaction used for production NaBO2 were also analyzed by XRD, which showed that at 70 and 130 °C, Na2B4O7 and NaOH particles contacted between the grains, and diffusion was initiated at the interface. However, there was not yet any observable formation of NaBO2. Formation of NaBO2 was initiated and sustained from 295 to 463 °C, and then completed at 595 °C; the product was anhydrous NaBO2. Activation energies (E a) of the solid-state reactions were calculated from the weight loss based on the Arrhenius model; it was found that in the initial stages of the solid-state reaction E a values were lower than in the last three steps.  相似文献   

2.
The thermal behaviour of [Ba(C2H6O2)4][Sn(C2H4O2)3] used as a BaSnO3 precursor, and its phase evolution during thermal decomposition are described. The initially formed transient barium tin oxycarbonate phase disintegrates into BaCO3 and SnO2, reacting subsequently to BaSnO3. The existence of the intermediate oxycarbonate phase is evidenced by Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD) and electron energy loss spectroscopy (EELS (ELNES)) investigations.  相似文献   

3.
Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560–700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25–35 nm) was observed.  相似文献   

4.
The thermal decomposition of Ho(III), Er(III), Tm(III) and Yb(III) propionate monohydrates in argon was studied by means of thermogravimetry (TG), differential thermal analysis (DTA), IR-spectroscopy and X-ray diffraction (XRD). Dehydration takes place around 90?°C. It is followed by the decomposition of the anhydrous propionates to Ln2O2CO3 (Ln?=?Ho, Er, Tm or Yb) with the evolution of CO2 and 3-pentanone (C2H5COC2H5) between 300 and 400?°C. The further decomposition of Ln2O2CO3 to the respective sesquioxides Ln2O3 is characterized by an intermediate plateau extending from approximately 500?C700?°C in the TG traces. This stage corresponds to an overall composition of Ln2O2.5(CO3)0.5 but is more probably a mixture of Ln2O2CO3 and Ln2O3. The stability of this intermediate state decreases for the lighter rare-earth (RE) compounds studied. Full conversion to Ln2O3 is achieved at about 1,100?°C. The overall thermal decomposition behaviour of the title compounds is similar to that previously reported for Lu(C2H5CO2)3·H2O.  相似文献   

5.
Glass composites comprising of un-doped and samarium-doped SrBi2Nb2O9 nanocrystallites are fabricated in the glass system 16.66SrO-16.66[(1−x)Bi2O3-xSm2O3]-16.66Nb2O5-50Li2B4O7 (0?x?0.5, in mol%) via the melt quenching technique. The glassy nature of the as-quenched samples is established by differential thermal analyses. Transmission electron microscopic studies reveal the presence of about 15 nm sized spherical crystallites of the fluorite-like SrBi1.9Sm0.1Nb2O9 phase in the samples heat treated at 530 °C. The formation of layered perovskite-type un-doped and samarium-doped SrBi2Nb2O9 nanocrystallites with an orthorhombic structure through the intermediate fluorite phase is confirmed by X-ray powder diffraction and micro-Raman spectroscopic studies. The influence of samarium doping on the lattice parameters, lattice distortions, and the Raman peak positions of SrBi2Nb2O9 perovskite phase is clarified. The dielectric constants of the perovskite SrBi2Nb2O9 and SrBi1.9Sm0.1Nb2O9 nanocrystals are relatively larger than those of the corresponding fluorite-like phase and the precursor glass.  相似文献   

6.
Three-dimensionally ordered macroporous (3-DOM) niobium oxide was fabricated by aqueous organic gel method through the interstitial spaces between polystyrene spheres assembled on glass substrates. Freshly precipitated hydrous niobium oxide (Nb2O5·nH2O), which was prepared starting from Nb2O5, was used in combination with citric acid in an aqueous solution and then was transferred as a niobium source to synthesize 3-DOM Nb2O5. The morphologies of porous Nb2O5 were characterized by scanning electron microscope (SEM). The thermal decomposition and phase composition of 3-DOM Nb2O5 were investigated by Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric–differential thermal analysis (TG–DTA), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).  相似文献   

7.
Glasses with compositions 60B2O3–40PbO, 60B2O3–40Bi2O3, and 60B2O3–30Bi2O3–10PbO have been prepared and studied by differential thermal analysis. The crystallization kinetics of the glasses was investigated under non-isothermal conditions. From dependence of the glass transition temperature (T g) on the heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined. Thermal stability of these glasses were achieved in terms of the characteristic temperatures, such as the glass transition temperature, T g, the onset temperature of crystallization, T in , the temperature corresponding to the maximum crystallization rate, T p, beside the kinetic parameters, K(T g) and K(T p). The results revealed that the 60B2O3–40PbO is more stable than the others. The crystallization mechanism is characterized for glasses. The phases at which the glass crystallizes after the thermal process have been identified by X-ray diffraction.  相似文献   

8.
Oxyfluoride glass-ceramics based on the aluminosilicate glass-matrix with the nano-phase of fluoride is an interesting material for optoelectronics. A new glass from the SiO2–B2O3–Na2O–LaF3 system in which nanocrystallization of LaF3 could be obtained as well is presented. Thermal stability of glass and the crystalline phases formed upon heat treatment were determined by DTA/DSC and XRD methods, respectively. The effect of the glass composition on thermal stability was investigated by the SEM method. It has been found that the addition of LaF3 increases the tendency to decomposition of the borosilicate glass. In glasses with the ratio B2O3/(Na2O+3La2F6)<1 it is possible to obtain the immersed crystallization of LaF3 in transparent glassy matrix. The process is preceded by LaOF formation. Glasses with the composition B2O3/(Na2O+3La2F6)≥1 revealed the tendency to La(BSiO5) crystallization.  相似文献   

9.
Thermal decomposition of ulexite   总被引:1,自引:0,他引:1  
The thermal decomposition of ulexite, NaCa[B5O6(OH)6] · 5H2O, monocrystals was investigated by thermal, X-ray, IR and optical microscopy methods at normal and elevated temperatures.It was found that the thermal decomposition has an intraframework character and proceeds in a few separate stages: 1) release of part of the molecular water coordinating the Ca and Na cations; this leads to a rearrangement of the ulexite structure; 2) release of the remaining molecular water and some part the OH groups, which causes breakdown of the ulexite structure, with the simultaneous crystallization of CaO · B2O3 and 2CaO·B2O3; 3) the slow release of the remaining OH groups up to 600°C, which causes decomposition of the borate rings and the crystallization of NaB3O5 and NaCaBO3.
Zusammenfassung Mittels thermischer, röntgenographischer, IR- und optisch mikroskopischer Verfahren wurde bei Normal- und bei hohen Temperaturen die thermische Zersetzung von Ulexiteinkristallen NaCa[BsO6(OH)6]·5H2O untersucht.Die Untersuchungen zeigten, daß die thermische Zersetzung von Ulexit einen Innergittercharakter trägt und in einigen separaten Schritten verläuft: 1) Freisetzung desjenigen molekularen Wassers, welches Ca und Na Kationen koordiniert; hierdurch geschieht eine Wiederherstellung der Ulexit-struktur, 2) Freisetzung des verbleibenden Kristallwassers und einem Teil der OH-Gruppen, wodurch eine Zersetzung der Ulexit-struktur unter gleichzeitiger Kristallisation von CaO · B2O3 und 2CaO · B2O3 erfolgt, 3) langsame Freisetzung der verbleibenden OH-Gruppen bis 600°C, was eine Spaltung der Boratringe und die Kristallisation von NaB3O5 und NaCaBO3 zur Folge hat.
  相似文献   

10.
The effect of TeO2 additions on the thermal behaviour of zinc borophosphate glasses were studied in the compositional series (100 − x)[0.5ZnO–0.1B2O3–0.4P2O5]–xTeO2 by differential scanning calorimetry, thermodilatometry and heating microscopy thermal analysis. The addition of TeO2 to the starting borophosphate glass resulted in a linear increase of glass transition temperature and dilatometric softening temperature, whereas the thermal expansion coefficient decreased. Most of glasses crystallize under heating within the temperature range of 440–640 °C. The crystallization temperature steeply decreases with increasing TeO2 content. The lowest tendency towards crystallization was observed for the glasses containing 50 and 60 mol% TeO2. X-ray diffraction analysis showed that major compounds formed by annealing of the glasses were Zn2P2O7, BPO4 and α-TeO2. Annealing of the powdered 50ZnO–10B2O3–40P2O5 glass leads at first to the formation of an unknown crystalline phase, which is gradually transformed to Zn2P2O7 and BPO4 during subsequent heating.  相似文献   

11.
The phase diagrams of the ternary systems NaCl–NaBO2–KCl, NaCl–KCl–Na2CO3, and KCl–NaBO2–Na2CO3 and the quaternary system NaCl–NaBO2–Na2CO3–KCl were studied by the calculation–experimental method and differential thermal analysis. Analytical models of phase equilibria were obtained, and the coordinates of ternary eutectics and a quaternary eutectic. It was shown that low-melting eutectic melts can be used as media for synthesizing oxide tungsten bronzes.  相似文献   

12.
The thermal decomposition of SrOsO3 has been studied by DTA, thermogravimetry and X-ray powder diffraction. The decomposition of orthorhombic Sr2Os2O7 depends strongly on the partial pressure of air above the samples investigated. In this paper the Sr2Os2O6.4±0.2 pyrochlore formation and some properties of the phase are described. The stability conditions of SrOsO3 are also discussed.  相似文献   

13.
通过稀释成盐法在富硼浓缩盐卤体系Na-K-Mg-Cl-SO4中合成了一种新的六硼酸镁Mg[B6O7(OH)6]·5H2O化合物。根据X射线粉末衍射数据对其晶体结构进行了精修,并采用红外及拉曼光谱法对其结构进行了表征,分析了其光谱及结构特征。结果表明,该化合物由1个Mg原子、1个B6O7(OH)6基团和5个H2O分子构成,Mg原子以六配位形式与氧结合形成畸变MgO6八面体构型;热重分析表明,高温分解过程该化合物脱水转化为四硼酸镁MgB4O7;通过紫外可见漫反射法求得其禁带宽度为4.44 eV。  相似文献   

14.
《Chemical physics letters》1986,129(5):450-457
Transparent glass ceramics with Cr(III) were obtained by different thermal treatment of glass with composition (mol%) 73.6 SiO2,11.8 Al2O3, 4.2 Li2O, 7.0 ZnO, 1.6 TiO2, 1.5 ZrO2, 0.3 As2O3, 0.024 Cr2O3, melted under various conditions. Parallel measurements of X-ray diffraction, optical and EPR spectra reveal the different formation ofgahnite from precursor glass or petalite-like phase.  相似文献   

15.
The present study deals with preparation and characterization of spinel mixed oxide systems NiM 2 III O4, where MIII?=?FeIII, CrIII. In order to obtain 50% NiFe2O4/50% SiO2 and 50% NiCr2O4/50% SiO2 nanocomposite, we have used a versatile route based on the thermal decomposition inside the SiO2 matrix, of some particular precursors, coordination compounds of the involved MII and MIII cations with dicarboxylate ligands. The ligands form in the redox reaction between metal nitrates mixture and 1,3-propanediol at the heating around 140?°C of the gels (tetraethylorthosilicate?Cmetal nitrates?C1,3-propanediol?Cwater). The as-obtained precursors, embedded in silica gels, have been characterized by FT-IR spectrometry and thermal analysis. Both precursors thermally decompose up to 350?°C leading to the formation of the corresponding metal oxides inside the silica matrix. X-ray diffraction of the annealed powders have evidenced the formation of NiFe2O4 starting with 600?°C, and NiCr2O4 starting with 400?°C. This behavior can be explained by the fact that, by thermal decomposition of the Fe(III) carboxylate at 300?°C, the spinelic phase ??-Fe2O3 is formed, which interacts with the NiO, forming the ferrite nuclei. By thermal decomposition of chromium carboxylate, a nonstoichiometric chromium oxide (Cr2O3+x ) is formed. In the range 380?C400?°C, Cr2O3+x turns into Cr2O3 which immediately interacts with NiO leading to the formation of nickel chromites nuclei inside the pores of silica matrix. Both spinels have been obtained as nanocrystalites homogenously dispersed as resulted from XRD and TEM data.  相似文献   

16.
The thermal behaviour of BaC2O4sd0.5H2O and BaCO3 in carbon dioxide and nitrogen atmospheres is investigated as part of a study about the thermal decomposition of barium trioxalatoaluminate. For this purpose thermogravimetry, differential thermal analysis, differential scanning calorimetry and high temperature X-ray diffraction were used. An infrared absorption spectrum of BaC2O4·0.5H2O was scanned at room temperature.At increasing temperature, in dry nitrogen, the hydrate water of BaC2O4· 0.5H2O is split off, followed by the oxalate decomposition. A part of the evolved carbon monoxide disproportionates, leaving carbon behind. At higher temperatures the latter reacts with barium carbonate, previously formed. Finally the residual solid barium carbonate decomposes into barium oxide and carbon dioxide.In dry carbon dioxide atmosphere an analogous dehydration occurs, followed by oxalate decomposition. Under these conditions the carbon formation is fully suppressed, and as a consequence no secondary reaction occurs. The barium carbonate decomposition is shifted to much higher temperatures, at a low rate in the solid phase, a strongly accelerated one at the onset of melting, and a moderated one when the melt is saturated with barium carbonate. The two phase transitions of BaCO3 are detectable in both atmospheres mentioned.  相似文献   

17.
B2O3-xLi2O3 (x=0, 0.1, 0.5) glasses have been prepared by the Sol-Gel method. The evolution of the composition and the structure of the materials upon thermal treatments are analyzed. Raman spectroscopy measurements reveal that the structure transforms from crystalline to amorphous. After a thermal treatment at 400°C, the materials exhibit a strong luminescence band which disappears upon further heating. In the case of no dopant (x=0) heating at 1150°C results in a Raman spectrum which is almost identical to the one corresponding to bulk B2O3 glass obtained by melting and quenching.  相似文献   

18.
Conflicting results have been reported by different workers on the thermal decomposition of silver carbonate, Ag2CO3. In the present study, the decomposition mechanism was elucidated by various analytical methods; gas analysis (differential thermal gas analyses) in helium, carbon dioxide and oxygen flows with and without a P2O5 trap or a KOH trap, DTA-TG in a carbon dioxide flow and high-temperature X-ray diffraction analysis in a carbon dioxide flow. The gas evolution at ca. 200?C consisted of carbon dioxide. A simultaneous evolution of carbon dioxide and oxygen occurred at ca. 400?C. Two endothermic peaks (ca. 189 and 197?C) without weight change during the heating in a carbon dioxide atmosphere were due to the phase transition of silver carbonate from the normal viaΒ toα phase. The reverse transition occurred during the cooling.  相似文献   

19.
The thermal decomposition of thiosulphatobismuthates(III) of alkali metals was investigated. The general formulae of the thiosulphatobismuthates are M3[Bi(S2O3)3]·H2O where M = Na, K, Rb or Cs, and M2Na[Bi(S2O3)3]·H2O where M = K or Cs.Typical thermal curves for thiosulphatobismuthates(III) and the results obtained in thermal, X-ray, chemical and spectrophotometrical analyses of the decomposition products are shown. The results were used to determine three stages of the thermal decomposition. At the first stage, at about 200°C, hydrated compounds are dehydrated. At the second stage, above 200°C, there is a rapid decrease in mass which is caused by evolving sulphur dioxide; bismuth sulphide and an intermediate decomposition product are formed. At about 320°C the thermal decomposition products are bismuth sulphide and alkali metal sulphate.  相似文献   

20.
Phase relations in the CaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction and differential thermal analyses, and the isothermal section at 600°C has been constructed. The formation of ternary compounds at the component ratios 1CaO: 1Bi2O3: 1B2O3 (CaBi2B2O7) and 1CaO: 1Bi2O3: 2B2O3 (CaBi2B4O10) has been established X-ray diffraction characteristics of these phases are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号