首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the control processes $$\begin{gathered} (E) z_{xy} + A(x,y)z_x + B(x,y)z_y + C(x,y)z = F(x,y)U(x,y) \hfill \\ q.o. in R = [0,\alpha [ \times [0,\beta [, \hfill \\ \end{gathered} $$ $$\begin{gathered} (\tilde E) z_{xy} + \bar A(x,y)z_x + \bar B(x,y)z_y + \bar C(x,y)z = \bar F(x,y)U(x,y) \hfill \\ q.o. in R \hfill \\ \end{gathered} $$ We show that under appropriate assumptions on the dataA, B, C, F, if the process (E) is completely controllable, then the perturbed process (ē) is completely controllable too. The result is obteined proving for the evolution matrixV, a continuous dependence on the coefficientsA, B, C.  相似文献   

2.
We consider a class of planar self-affine tiles T = M-1 a∈D(T + a) generated by an expanding integral matrix M and a collinear digit set D as follows:M =(0-B 1-A),D = {(00),...,(|B|0-1)}.We give a parametrization S1 →T of the boundary of T with the following standard properties.It is H¨older continuous and associated with a sequence of simple closed polygonal approximations whose vertices lie on T and have algebraic preimages.We derive a new proof that T is homeomorphic to a disk if and only if 2|A| |B + 2|.  相似文献   

3.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

4.
Let(?)=B_ηu:2(q-(?))+(⊿((?)-2q))+(2q_x+(?)_x))η=0,2(r-(?)+(⊿(2(?)-r)+(r_x+2(?)_x))η=0,u=(q,r)~Tbe the Backlund transformation (BT) of the hierarchy of AKNS equations,where η is a parameterand Δ=integral from -∞ to x (qr-(?))dx′.It is shown in this paper the infinitesimal BT B_(η+ε)B_η~(-1) admits thefollowing expansionB_(η+ε)B_η~(-1)u=u+εsum from n=0 to ∞ β_n(JL~(n+1)u)η~n,β_n=1+(-1)~n2~(-n-1),where L is the recurrence operator of the hierarchy and ε is an infinitesimal parameter.Thisexpansion implies the equivalence between the permutabiliy of BTs and the involution in pairs ofconserved densities.  相似文献   

5.
This article provides an asymptotic formula for the number of integer points in the three-dimensional body $$ \left( \begin{gathered} x \hfill \\ y \hfill \\ z \hfill \\ \end{gathered} \right) = t\left( \begin{gathered} (a + r\cos \alpha )\cos \beta \hfill \\ (a + r\cos \alpha )\sin \beta \hfill \\ r\sin \alpha \hfill \\ \end{gathered} \right),0 \leqq \alpha ,\beta < 2\pi ,0 \leqq r \leqq b, $$ for fixed a > b > 0 and large t.  相似文献   

6.
We consider in this paper the limit behavior of the solutionsu ? of the problem $$\begin{gathered} - div(a^\varepsilon Du^\varepsilon ) + \gamma u^\varepsilon = H^\varepsilon (x, u^\varepsilon , Du^\varepsilon ), \hfill \\ u^\varepsilon \in H_0^1 (\Omega ) \cap L^\infty (\Omega ), \hfill \\ \end{gathered}$$ whereH ? has quadratic growth inDu ? anda ? (x) is a family of matrices satisfying the general assumptions of abstract homogenization. We also consider the problem $$\begin{gathered} - div(a^\varepsilon Du^\varepsilon ) + G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) = f \in H^{ - 1} (\Omega ), \hfill \\ u^\varepsilon \in H_0^1 (\Omega ), G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) \in L^1 (\Omega ), u^\varepsilon G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) \in L^1 (\Omega ) \hfill \\ \end{gathered}$$ whereG ? has quadratic growth inDu ? and satisfiesG ? (x, s, ξ)s ≥ 0. Note that in this last modelu ? is in general unbounded, which gives extra difficulties for the homogenization process. In both cases we pass to the limit and obtain an homogenized equation having the same structure.  相似文献   

7.
We prove the existence of cubic systems of the form $$ \begin{gathered} \dot x = y[1 - 2r(5 + 3r^2 )x + \gamma \lambda ^2 x^2 ] + a_0 x + a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x^3 + a_5 x^2 y + a_6 xy^2 , \hfill \\ \dot y = - x(1 - 8rx)(1 - 3r\gamma x) - 2x[2(1 - 3r^2 ) - r\gamma (7 - 15r^2 )x]y \hfill \\ - [r(11 + r^2 ) + \gamma (1 - 22r^2 - 3r^4 )x]y^2 \hfill \\ - 2r\gamma \delta y^3 + a_0 y + a_7 x^2 + a_8 xy + a_9 y^2 + a_{10} x^3 + a_{11} x^2 y, \hfill \\ \end{gathered} $$ where α = 3r 2 + 17, γ = r 2 + 3, δ = 1 ? r 2, and λ = 3r 2 + 1, that have at least eleven limit cycles in a neighborhood of the point O(0, 0).  相似文献   

8.
modm. Ifm is natural,a an integer with (a, m)=1 put $$\begin{gathered} {}^om(a): = min\{ h\left| {h \in \mathbb{N},} \right.a^h \equiv 1(modm)\} , \hfill \\ \psi (m): = \max \{ o_m (a)\left| a \right. \in \mathbb{Z},(a,m) = 1\} , \hfill \\ g(m): = \min \{ a\left| {a \in \mathbb{N},(a,m) = 1,o_m (a) = } \right.\psi (m)\} . \hfill \\ \end{gathered} $$ Form prime,g(m) is the least natural primitive root modm. We establish the estimation $$\sum\limits_{m< x} {g(m)<< x^{1 + \varepsilon } .} $$   相似文献   

9.
In [1] (p. 215), the authors Andronov, Leontovich-Andronova, Gordon, and Maier, consider the following equation: $$\left\{ \begin{gathered} \tfrac{{dx}}{{dt}} = y, \hfill \\ \tfrac{{dy}}{{dt}} = x + x^2 - \left( {\varepsilon _1 + \varepsilon _2 x} \right)y, \hfill \\ \end{gathered} \right.$$ whereε 1 andε 2 are real constants andε 1 andε 2 are not both zero. They proved that there are no non-trivial periodic solutions except possibly for the case $0< \tfrac{{\varepsilon _1 }}{{\varepsilon _2 }}< \tfrac{3}{2}$ . They left that case as an open problem. In this note we prove that there are indeed no non-trivial periodic solutions in the case $0< \tfrac{{\varepsilon _1 }}{{\varepsilon _2 }}< \tfrac{3}{2}$ either. Our method of proof consists essentially of constructing a Dulac function (see [6] and [9]) and using the conception of Duff's rotated vector field (see [4], [7], [8], [10], and [11]).  相似文献   

10.
Given aself similar fractal K ? ? n of Hausdorff dimension α>n?2, andc 1>0, we give an easy and explicit construction, using the self similarity properties ofK, of a sequence of closed sets? h such that for every bounded open setΩ?? n and for everyf ∈ L2(Ω) the solutions to $$\left\{ \begin{gathered} - \Delta u_h = f in \Omega \backslash \varepsilon _h \hfill \\ u_h = 0 on \partial (\Omega \backslash \varepsilon _h ) \hfill \\ \end{gathered} \right.$$ converge to the solution of the relaxed Dirichlet boundary value problem $$\left\{ \begin{gathered} - \Delta u + uc_1 \mathcal{H}_{\left| K \right.}^\alpha = f in \Omega \hfill \\ u = 0 on \partial \Omega \hfill \\ \end{gathered} \right.$$ (H α denotes the restriction of the α-dimensional Hausdorff measure toK). The condition α>n?2 is strict.  相似文献   

11.
In the paper, we obtain the existence of positive solutions and establish a corresponding iterative scheme for BVPs $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u(0) - B(u\prime (\eta )) = 0, u\prime (1) = 0 \hfill \\ \end{gathered} \right.$$ and $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u\prime (0) = 0, u(1) + B(u\prime (\eta )) = 0 \hfill \\ \end{gathered} \right.$$ The main tool is the monotone iterative technique. Here, the coefficientq(t) may be singular att = 0,1.  相似文献   

12.
Let B be a semigroup with the additional relation $$\begin{gathered} xx \Rightarrow x \hfill \\ xyz \Rightarrow xz if x \mathop {CI}\limits_ = z and xy\mathop {CI}\limits_ = z \hfill \\ \end{gathered} $$ B is called aband or anidempotent semigroup [3]. It is shown in this paper that the replacement rules (rewrites) resulting from the axiom of idempotence: $$\forall w \in B.ww = w$$ can be replaced by theNoetherian, confluent, conditional rewrites (i. e. a terminating replacement system having the Church-Rosser-Property): $$\begin{gathered} xx \Rightarrow x \hfill \\ x \Rightarrow xx \hfill \\ \end{gathered} $$ These rewrites are used to obtain a unique normal form for words in B and hence are the basis for a decision procedure for word equality in B. The proof techniques are based uponterm rewriting systems [7] rather than the usual algebraic approach. Alternative and simpler proofs of a result reported earlier by Green and Rees [4] and Gerhardt [6] have been obtained.  相似文献   

13.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

14.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

15.
Consider the following functional equations of neutral type: $$\begin{gathered} (i) (d/dt)D(t,x_t ) = L(t,x_t ), \hfill \\ (ii) (d/dt)D(t,x_t ) = L(t,x_t ) + B(t)u(t), \hfill \\ (iii) (d/dt)D(t,x_t ) = L(t,x_t ) + B(t)u(t) + f(t,x(t),u(t)), \hfill \\ \end{gathered} $$ whereD, L are bounded linear operators fromC([?h, 0],E n) intoE n for eacht?(σ, ∞) =J, B is ann ×m continuous matrix function,u:JC m is square integrable with values in the unitm-dimensional cubeC m, andf(t, 0, 0)=0. We prove that, if the system (i) is uniformly asymptotically stable and if the controlled system (ii) is controllable, then the system (iii) is null-controllable with constraints, provided that $$f = f_1 + f_2 $$ , where $$\begin{gathered} |f_1 (t,\phi ,0)| \leqslant \varepsilon \parallel \phi \parallel , |f_2 (t,\phi ,0)| \leqslant \pi (t)\parallel \phi \parallel , t \geqslant \sigma , \hfill \\ \Pi = \int_0^\infty {\pi (t)dt< \infty .} \hfill \\ \end{gathered} $$   相似文献   

16.
A thorough investigation of the systemd~2y(x):dx~2 p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤xx_0>0) -η, x_0≤x<2π(η>0)p(x)=p(x 2π),-∞相似文献   

17.
Present investigation analyses the Ljapunov stability of the systems of ordinary differential equations arising in then-th step of the Faedo-Galerkin approximation for the nonlinear wave-equation $$\begin{gathered} u_{tt} - u_{xx} + M(u) = 0 \hfill \\ u(0,t) = u(1,t) = 0 \hfill \\ u(x,0) = \Phi (x); u_t (x,0) = \Psi (x). \hfill \\ \end{gathered}$$ For the nonlinearities of the classM (u)=u 2 p+1 ,pN, ann-independent stability result is given. Thus also the stability of the original equation is shown.  相似文献   

18.
LetΛ 1(Ω) be the first eigenvalue of the vector-valued problem $$\begin{gathered} \Delta u + \alpha grad div u + \Delta u = 0 in \Omega , \hfill \\ u = 0 in \partial \Omega , \hfill \\ \end{gathered} $$ , withα>0. Letλ 1(Ω) be the first eigenvalue of the scalar problem $$\begin{gathered} \Delta u + \lambda u = 0 in \Omega , \hfill \\ u = 0 on \partial \Omega . \hfill \\ \end{gathered} $$ . The paper contains a proof of the inequality $$\left( {1 + \frac{\alpha }{n}} \right)\lambda _1 \left( \Omega \right) > \Lambda _1 \left( \Omega \right) > \left( \Omega \right)$$ and improves recent estimates of Sprössig [15] and Levine and Protter [11]. Moreover we show, ifΩ is a ball, that an eigensolution u1, associated withΛ 1(Ω) is not unique and that the eigensolutions for this and higher eigenvalues are never rotationally invariant. Finally we calculate some eigensolutions explicitly.  相似文献   

19.
We obtain an estimate of the modulus of a complete multiple rational trigonometric sum: $$\left| {\sum {_{x_{1, \ldots ,} x_r = 1^{\exp \left( {{{2\pi if\left( {x_{1, \ldots ,} x_r } \right)} \mathord{\left/ {\vphantom {{2\pi if\left( {x_{1, \ldots ,} x_r } \right)} q}} \right. \kern-\nulldelimiterspace} q}} \right)} }^q } } \right| \ll q^{{{r - 1} \mathord{\left/ {\vphantom {{r - 1} {n + \varepsilon }}} \right. \kern-\nulldelimiterspace} {n + \varepsilon }}} ,$$ where $$\begin{gathered} f\left( {x_{1, \ldots ,} x_r } \right) = \sum {_{0 \leqslant t_1 , \ldots ,t_r \leqslant n^a t_1 , \ldots ,t_r x_1^{t_1 } \ldots x_r^{t_r } ,} } \hfill \\ a_{0, \ldots ,0} = 0,\left( {a_{0, \ldots ,0,1} , \ldots ,a_{n, \ldots ,n,} q} \right) = 1 \hfill \\ \end{gathered} $$ , and an estimate of the modulus of a multiple trigonometric integral.  相似文献   

20.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号