首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural investigation of molecules in the vapor over neodymium tribromide was performed by synchronous gas-phase electron diffraction and mass spectrometric (GED/MS) experiments at 1110(10) K. Besides the monomeric molecules (NdBr3), a small amount (0.7%) of the dimer (Nd2Br6) was detected. For NdBr3, the thermal-average bond length r g (Nd–Br) of 2.675(6) Å was determined. The equilibrium structure was estimated to be planar (or nearly planar) with r e (Nd–Br) of 2.659(7) Å. Three vibrational frequencies were estimated using the GED data: 1 = 193 cm–1, 2 = 35 cm–1, 4 = 41 cm–1. The structural parameters of Nd2Br6 could not be refined and were constrained at the estimated values during the analysis.  相似文献   

2.
The saturated vapors of praseodymium and holmium tribromides were investigated for the first time by electron diffraction with mass spectral monitoring at 1100(10) and 991(10) K. It is established that the molecules have a pyramidal effective configuration with bond angles Br–Pr–Br = 114.7(10)° and Br–Ho–Br = 115.3(11)°. Given the low deformation vibration frequencies of lanthanide tribromide molecules, the insignificant pyramidality of the rg configuration may correspond to the planar equilibrium geometry of D3h symmetry for the molecules. The internuclear distances rg(Pr–Br) = 2.696(6) and rg(Ho–Br) = 2.594(5) point to the lanthanide compression effect. The vibration frequencies of PrBr3 and HoBr3 molecules were estimated from electron diffraction data.  相似文献   

3.
The series of compounds of the general formulae HgX2(tzdtH) and HgX2(tzdtH)2 (X = Cl, Br, I; tzdtH = 1,3-thiazolidine-2-thione) have been prepared, as well as Hg(tzdt)2. IR, 1H, and 13C NMR spectral data of the complexes indicate thione donation, which is confirmed by the crystal structure analyses of [HgBr2(tzdtH)]2, [HgI2(tzdtH)]2, and HgI2(tzdtH)2. The structures of [HgBr2(tzdtH)]2 and [HgI2(tzdtH)]2 consist of centrosymmetric doubly bridged dimers, but they are not isostructural. The asymmetry in the HgX2Hg bridge is more pronounced in the bromo than in the iodo derivative [S–Hg–X(terminal) is 138.19(9)° for X = Br and 123.49(10)° for X = I], which is accompanied by the stronger Hg–S covalent bond in the bromo than in the iodo complex [2.435(4) vs. 2.510(3) Å]. The Hg–X(bridging) (X = Br, I) bond distances are shorter than the sum of van der Waals radii for mercury and X. Dimeric centrosymmetric complex units are held together only by van der Waals forces in [HgI2(tzdtH)]2, while in [HgBr2(tzdtH)]2 there is an intramolecular hydrogen bond of N–H Br type (3.34(1) Å). HgI2(tzdtH)2 exists as a mononuclear tetrahedral complex with two long Hg–S [2.672(1) Å] and two short Hg–I bond distances [2.688(1) Å] related by a twofold axis. The molecules of HgI2(tzdtH)2 are linked into infinite chains along the c axis by intermolecular N–H S [3.38(1) Å] hydrogen bonds.  相似文献   

4.
The complex salt [Cu4(SCN2H4)7(NO3)](NO3)(SO4) · 3.3H2O was synthesized via reaction of aqueous solutions of thiourea with copper nitrate at 80°C and studied using X-ray diffraction analysis. The conditions and reasons for the partial oxidation of thiourea to sulfate ions were established. The crystals are monoclinic: a = 12.6072(7) Å, b = 15.4265(8) Å, c = 22.108(1) Å, = 120.133(6)°, space group P21/c, Z = 4. The crystal structure consists of [Cu4(SCN2H4)7(NO3)]3+ complex cations, SO4 2–, and NO3 anions, and molecules of the water of crystallization. Three types of coordination of the Cu atom were distinguished in the structure: trigonal (Cu–S 2.213–2.279 Å), tetrahedral (Cu–S 2.315–2.459 Å), and trigonal–pyramidal (3+1) (Cu–S 2.26–2.288, Cu–O 2.68 Å). The NO3 ligand was found to be orientationally disordered.  相似文献   

5.
Crystal structures of [Co(MH)2(Thio)2][BF4] · H2O (I) and [Co(DH)2(NH3)2][BF4] (II), where MH is H3C–C(NOH)–C(NO)–H and DH is H3C–C(NOH)–C(NO)–CH3, were determined by X-ray diffraction. The crystals are monoclinic, space group C2/c, unit cell parameters (for I and II, respectively): a = 22.018(2) Å, b = 7.943(1) Å, c = 11.681(1) Å, = 92.68(1)° and a = 21.436(2) Å, b = 6.400(2) Å, c = 12.389(2) Å, = 113.13(1)°. In both cases, the Co(III) coordination polyhedron is a centrosymmetrical trans-octahedron, N4S2 for I and N6 for II. In the crystals of I and II, the complex cations and the outer-sphere [BF4] anions (and the crystal water molecules in I) form elaborate hydrogen bonding system.  相似文献   

6.
The crystal structure of thallium fluoroantimonate(III) complex TlSb4F13 (I), which is isostructural to KSb4F13 (II), is determined. Crystals I are tetragonal: a = 9.634(2) Å, c = 6.590(2) Å, V = 611.7(2) Å3, Z = 2, (calcd) = 5.094 g/cm3, F(000) = 804.0, space group I4¯. The structure consists of tetrameric [Sb4F13] anions formed by SbF3 groups connected by the fluoride ion and the l+ cations.  相似文献   

7.
The compound [Cu2(bipym)3(sac)2(H2O)2](sac)2(H2O)4 (bipym = 2,2-bipyrimidine and sac = saccharin) crystallizes in the space group P-1, with a = 10.710(3), b = 10.725(3), c = 13.637(5) Å, a = 70.07(3), = 80.31(2), g = 82.87(3)° and Z = 2. The geometry in the centrosymmetric dinuclear complex around each CuII ion is a distorted octahedron, in which the equatorial plane is formed by a nitrogen atom of a bis-didentate bridging bipym ligand, two nitrogen atoms of a didentate bipym ligand, and the nitrogen atom of a coordinating sac ligand. The axial positions in the octahedron are occupied by a second nitrogen of the bis-didentate bridging bipym ligand and a water molecule. The lattice contains two saccharinate anions and four water molecules held together in a hydrogen-bonded network. The i.r vibrations of the bipym ligand are found as a quasi-symmetric doublet at 1558 and 1580 cm–1, while the most important i.r vibrations of the sac ligand are observed at 1629 and 1644 cm–1 (carbonyl vibrations) and at 1285 and 1159 cm–1 (sulfonyl vibrations). The magnetic exchange interactions between the Cu ions is very weak and is ferromagnetic (J < 0.1 cm–1).  相似文献   

8.
Electron diffraction (ED) data for B2F4 recorded by Hedberg et al. over the temperature range –80 to +150°C have been used to obtain equilibrium geometry of this molecule in the framework of a large-amplitude motion model. The torsional coordinate has been adiabatically separated from the rest of vibrations. Two types of constraints applied to obtain ab initio torsional potential energy function (PEF) and the parameters of the geometry relaxation are discussed. The relations between anharmonic interaction force constants and the parameters of the geometry relaxation are briefly considered. Ab initio force constant matrices for rigid vibrational coordinates as well as large-amplitude torsional PEF have been scaled in the procedure of simultaneous fitting to the ED data and experimental vibrational frequencies. The resulting equilibrium geometry and potential function provided good fit to both ED and spectroscopic data. As expected, the results for the equilibrium geometry obtained from separate ED patterns recorded at different temperatures did not show noticeable temperature trend. The determined equilibrium structural parameters for B2F4 are: r e (B–B) = 1.719(4) Å, r e (B–F) = 1.309(2) Å, BBF = 121.1(1)°. Uncertainties given in parentheses include three times standard deviation and a systematic error. The rotational barrier height was evaluated as 160(50) cm–1.  相似文献   

9.
Two 2-terephthalate (tp) bridged complexes, [Cu2(tp)(pren)4](ClO4)2 (pren = 1,3-diaminopropane) (1) and [Ni2(tp)(pren)4(Him)2](ClO4)2 (Him = imidazole) (2), have been synthesized and characterized by X-ray single-crystal structural analysis. In the discrete dinuclear [Cu2(tp)(pren)4]2+ cation of complex (1), each CuII atom has a square-pyramidal geometry, being coordinated by four nitrogen atoms (avg. 2.031 Å) from two pren ligands at the basal plane and one oxygen atom [2.259(3) Å] from a bis-monodentate tp group at the axial position. In the discrete dinuclear [Ni2(tp)(pren)4(Him)2]2+ cation of complex (2), each NiII center is coordinated by five nitrogen atoms [Ni—N 2.069(3)–2.109(2) Å] from one Him group and two pren groups, and completed by one oxygen atom [Ni—O 2.138(3) Å] from a bis-monodentate tp group to furnish a distorted octahedron. Magnetic susceptibility studies show that the pair of metal atoms, although being separated by >11.5 Å, exhibit weak intramolecular antiferromagnetic interactions in complexes (1) (g = 2.07 and J = –3.4 cm–1) and (2) (g = 2.10 and J = –0.7 cm–1). The electrochemical behaviors of the complexes have also been studied by cyclic voltammogram processes.  相似文献   

10.
The molecular structure of BiBr3 was determined by gas-phase electron diffraction. The principal geometrical parameters are r (Bi—Br) = 2.567 ± 0.005 Å and 221D;Br—Bi—Br = 98.6 ± 0.2°. The force field of the molecule was obtained by a normal coordinate analysis utilizing both experimental vibrational frequencies and electron diffraction mean amplitudes of vibration. The variation of bond lengths and bond angles within the Group 15 trihalides is consistent with the expected trend, except that all bismuth trihalide bond angles appear to be somewhat large.  相似文献   

11.
The electron diffraction intensities of germanium dibromide [1] were reanalyzed based on computational evidence on the geometry of the excited state molecule. It was found that beside the ground state germanium dibromide molecule a small amount of iron dibromide, rather than other germanium dibromide species, may have been present in the vapor. The revised geometrical parameters of GeBr2 are: r g(Ge—Br) = 2.359 ± 0.005 Å and a Br—Ge—Br = 101.0 ± 0.3 Å.  相似文献   

12.
The variations in the structure of deep-level calcinated NH4Na-Y zeolite (68 % NH4 +, Si/Al = 2.56) at 873 K (stage I of the hydrothermal dealumination) as a result of ammonation and subsequent calcination in water vapor at 973 and 1023 K (stageII) were studied using the IR spectra of zeolite framework vibrations. It was shown that ammonation of the product of stageI promotes the formation of linear disiloxane bonds and extra-framework =AlVI-OH species identified by absorption at 482, 1196 cm–1, and 524, 612, 829 cm–1. The ammonation is also accompanied by an increase in the excessive negative framework charge (ENFC), which is manifested in the high-frequency (HF) shift of the bands that have maxima in thev as (TO4) region and equals 10 cm–1, and also by a decrease in the unit cell parameter (a 0) by 0.14 Å. The decrease in both the ENFC anda 0 for the products of stageII, v as (TO4) = 10–20 cm–1 and a 0 = 0.07–0.14 Å, is due to the formation of nonlinear disiloxane bonds and non-framework aluminum hydroxide species identified by the absorption bands at 478, 1173 cm–1 and 530, 615, 835 cm–1.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 660–664, April, 1993.  相似文献   

13.
Palladium clusters Pd4(SEt)4(OAc)4(I) and Pd6(SEt)12(II) were synthesized and studied. Their structure was determined by X-ray diffraction analysis. For I, a= 9.774(2) Å, b= 10.821(2) Å, c= 13.061(3) Å, = 92.88(3)°, V= 1379.6(5) Å3, (calcd.) = 2.182 g/cm3, space group P21/n, Z= 4, N ref= 1558, and R= 0.031; for II, a= 10.581(1) Å, b= 10.584(2) Å, c= 11.478(2) Å, = 101.62(1)°, = 104.95(1)°, = 106.74(1)°, V= 1135.2(4) Å3, (calcd) = 2.007 g/cm3, space group P1, Z= 1, N ref= 2828, and R= 0.022. In cluster I, four Pd atoms form a planar cycle. The neighboring palladium atoms are bound by two acetate or by two mercaptide bridges, the Pd···Pd distances being 3.036–3.195 Å. In cluster II, Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.083–3.127 Å. The neighboring palladium atoms are bound by two mercaptide bridges. The formation of analogous clusters in solution was confirmed by IR spectroscopy.  相似文献   

14.
Crystals of [Cu(o-Andp)(H2O)2] · 2H2O (where o-Andp2–is -anisidine-N,N-di-3-propionate) were synthesized and studied using X-ray diffraction analysis. The crystals are triclinic: a= 12.063(1) Å, b= 12.483(3) Å, c= 13.586(2) Å, = 91.29(1)°, = 111.67(1)°, = 104.00(1)°, V= 1830.5(5) Å3, space group P , Z= 2, and R= 0.0528 for 5965 reflections with I2(I). The two crystallographically independent complexes are isostructural. The tetragonal–bipyramidal coordination of copper(III) involves three O atoms, the N atom of the tetradentate ligand o-Andp2–, and two O atoms from water. The aminodipropionate group of the ligand (average Cu–O 1.939 Å and Cu–N 2.051 Å) and one of the coordinated water molecules (Cu–O(w) 1.991 Å) lie in the equatorial plane. The second water molecule (Cu–O(w) 2.32 Å) and the methoxy O atom of o-Andp2–(Cu–O 2.37 Å) are in the apical positions of the bipyramid.  相似文献   

15.
The crystal structure of a novel antimony(III) fluoride complex, ammonium undecafluorotriantimonate(III) (NH4)2Sb3F11, was determined. The crystals are triclinic: a = 7.780(2) Å, b = 8.370(2) Å, c = 10.620(1) Å, = 71.06(1)°, = 89.03(1)°, = 63.58(1)°, V = 579.1(2) Å3, Z = 2, (calcd) = 3.500 g/cm3, (exp) = 3.51 g/cm3, F(000) = 548.0, space group P . The structure consists of anionic [Sb3F11]2– chains and ammonium cations combined into a framework by the N–H···F hydrogen bonds.  相似文献   

16.
The crystal structures of complex antimony(III) fluorides RbSbF4 (I) and (C2N4H5)SbF4 (II) were determined. The crystals of I and II are monoclinic; for I: a = 4.628(1) Å, b = 6.167(1) Å, c = 7.922(1) Å, = 100.582(3)°, V = 222.24(7) Å3, Z = 2, (calcd.) = 4.23 g/cm3, (exp.) = 4.25 g/cm3, F(000) = 248, space group P21/m, R = 0.0395; for II: a = 4.678(1) Å, b = 7.339(4) Å, c = 10.185(1) Å, = 90.88(2)°, V = 349.6(2) Å3, Z = 2, (calcd.) = 2.69 g/cm3, (exp.) = 2.70 g/cm3, F(000) = 264, space group P21. The structure of I is formed by Rb+ cations and [SbF4] n n anionic chains composed of SbF5E octahedra with two bridging fluorine atoms. The structure of IIis formed by (C2N4H5)+ cations and isolated [SbF4] anions in which the antimony polyhedra are SbF4E trigonal bipyramids. The relationship between the crystal structures and electrophysical and biological properties of single-charged cation tetrafluoroantimonates(III) was studied.  相似文献   

17.
X-ray crystal structure analyses of sulfamide were carried out at 293 K and at 100 K:M=96.10, orthorhombic, Fdd2,Z=8,F(000)=400, Mo K, =0.71069 Å (graphite monochromator). A) 293 K:a=9.127 (1) Å,b=16.857 (5) Å,c=4.579 (1) Å,V=704.50 Å3,d x =1.812 Mgm–3, =0.648 mm–1,R=1.77%,R w =1.94% (384 reflections, 33 parameters). B) 100K:a=9.059 (1) Å,b=16.780 (8) Å,c=4.517 (1) Å,V=686.63 Å3,d x =1.859 Mgm–3, =0.665 mm–1,R=1.78%,R w =1.95% (404 reflections, 33 parameters). The sulfamide molecule shows at 293 K S-O and S-N distances of 1.429 (1) Å and 1.620 (1) Å, respectively, which are in agreement with IR data. Hydrogen positions could be determined from differenceFourier syntheses. Strong weakening of some intense low order reflections by extinction was observed, their anisotropy depends on the crystal and on temperature.
  相似文献   

18.
The phosphido-bridged cluster [Ir6(CO)14 PPh2] has been obtained by reaction of [Ir6(CO)15]2– with PHPh2, in the presence of ferrocenium cation, followed by deprotonation. The anion was isolated as a salt of [N(PPh3)2]+ or K+ and its structure was determined by single crystal X-ray data analysis. The salt [N(PPh3)2][Ir6(CO)14PPh2] crystallizes in the triclinic space group P witha = 11.835(1) Å,b = 15.007(1) Å,c = 18.766(2)_ Å; = 78.779(7)°, = 87.260(8)°, = 75.794(6)°,V = 3169.3(7) Å,Z = 2. The structure was solved by Direct Methods and Difference Fourier techniques and refined down toR andR w values of 0.034 and 0.036, respectively, for 8003 observed reflections havingl > 3(I). The octahedral anion, of idealized C2 symmetry, possesses two distance Ir-P = 2.284 Å, formally acting as a three electron donor. Average bond distances (Å) and angles (degrees) are: Ir-Ir = 2.776, Ir-C t = 1.87, Ir-C b = 2.05, C t -O t = 1.14, C b -Ob= 1.17, Ir-P-Ir = 74.3°, Ir-C t -O t = 177°, Ir-C b -O b = 138°, Ir-C b -Ir = 84° (t = terminal,b = bridging).  相似文献   

19.
The microwave spectra of (CH3)2PSF, (CH3)(CD3)PSF, (CD3)2PSF, and (CH3)2P34SF have been investigated from 20.0 to 40.0 GHz. Botha-type R branch andc-type Q branch transitions have been measured in the ground states of each isotopic species. From a least-square adjustment to fit 12 rotational constants, the following structural parameters were obtained:r(P–F)=1.582 ± 0.003 Å;r(P=S)=1.902 ± 0.001 Å;r(P-C)=1.800 ± 0.001 Å;r(C-H)=1.088 ± 0.002 Å; HCP=109.28 ± 0.12°; SPF=114.50 ± 0.13°; and SPC=116.33 ± 0.06°. From Stark effect measurements, the dipole moment components have been determined to be ¦ a ¦ =3.556 ± 0.005; ¦ c ¦=2.026 ± 0.009; and ¦ t ¦=4.093 ± 0.009 (D). The Raman spectra (3200 to 100 cm–1) of each isotopic species have been measured for the solid, and liquid and qualitative depolarization values obtained. Additionally, the mid-infrared spectra (3200 to 500 cm–1) of the solids have been recorded. Proposed assignments of the normal modes have been made on the basis of Raman depolarization values and group frequencies which are supported by normal coordinate analysis utilizing an ab initio force field. Optimized structural parameters have been obtained with both the 3-21G* and 6-31G* basis sets. These results are compared to the corresponding quantities for several similar molecules.For part XLVIII, seeJ. Raman Spectrosc.1922,23, 107.  相似文献   

20.
A crystal structure analysis of the colourless AgSO3NH2 was carried out at room temperature:M=203.95, orthorhombic, Pcab,a=7.809 (2) Å,b=8.067 (2) Å,c=11.682 (3) Å,V=735.9 Å3,Z=8,d x=3.681 Mgm–3,F(000)=760, Mo K, =0.71069 Å (graphite monochromator), =5.77 mm–1,R=4.36% (509 reflections, 56 parameters). The ionic structure shows approximate trigonal bipyramidal coordination around the Ag+-ions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号