首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高文杰  白玉  刘虎威 《色谱》2021,39(9):981-988
蛋白质糖基化作为最重要的翻译后修饰之一,在生物体诸如细胞信号转导、蛋白质翻译调控、免疫应答等诸多生命过程中发挥重要作用。此外,蛋白质的异常糖基化还与肿瘤等疾病的发生发展密切相关,这为以糖蛋白为目标的疾病生物标志物的发现提供了可能。尽管质谱已经成为糖蛋白质组学的重要分析工具,但糖肽的低丰度和低电离效率使得其直接质谱分析仍面临挑战。在糖蛋白质组学研究中,从复杂的生物样品中富集糖蛋白和糖肽是重要的环节。磁性固相萃取(MSPE)是一种操作简单、成本低和萃取效率高的样品预处理方法。在磁性固相萃取中,磁性吸附剂是影响萃取效果的关键,将功能化磁性纳米材料作为吸附剂进行糖蛋白质组学研究已经得到广泛应用。该文综述了糖分子、离子液体、凝集素、硼酸亲和配体、金属有机框架、共价有机骨架等功能化磁性纳米材料的制备及其在糖蛋白及糖肽富集中的应用。上述功能化磁性纳米材料具有高比表面积、大量作用位点等特点,其富集机理包括亲水相互作用色谱、凝集素亲和作用色谱、硼酸化学法和肼化学法等,主要应用于血清、血浆、细胞、组织、唾液等样品的糖蛋白和糖肽的富集。该文引用了近十年来发表的约90篇源于科学引文索引(SCI)与中文核心期刊的相关论文,并于文末对磁性纳米材料在糖蛋白和糖肽富集领域的发展趋势进行了展望。  相似文献   

2.
Glycosylation is one the most common post-translational modifications (PTM) and glycoproteins play fundamental roles in a diversity of biological processes. The development of an analytical approach to the study of variation of glycosylation patterns in serum samples has been hindered by the structural heterogeneity of this post-translational modification and the complexity of serum proteome. We have used the ability of different lectins to recognize specific glycosylation motifs to develop a specific affinity system that can achieve a comprehensive capture of serum glycoproteins. In a preliminary investigation, we evaluated the ability of five commonly used immobilized lectins to capture glycoproteins from human serum. SDS-PAGE analysis showed each lectin was able to enrich a subset of the serum glycoproteome and overlaps in lectin specificity were indeed observed. Based on these results and with the goal of studying the extent of the human serum glycoproteome, we then developed a multi-lectin affinity column containing Concanavalin A (Con A), Wheat germ and Jacalin lectin. The selection of lectins was also based on the known N-linked and O-linked glycan structures that are considered representative of the serum proteome. We then demonstrated that the capture of glycoproteins was specific, efficient and reproducible with this multi-lectin column. The results obtained with this affinity step indicated that about 10% of human serum proteins are glycosylated (weight/weight) and, after removal of six high abundance proteins, including albumin, at least 50% of the remaining proteins were glycosylated. We then evaluated the use of this affinity column to monitor changes in the pattern of glycosylation in serum samples by a controlled, stepwise release of the captured proteins from the multi-lectin affinity column with specific displacers.  相似文献   

3.
Aberrant glycosylation plays a pivotal role in a diverse set of diseases, including cancer. A microfluidic lectin blotting platform is introduced to enable and expedite the identification of protein glycosylation based on protein size and affinity for specific lectins. The integrated multistage assay eliminates manual intervention steps required for slab-gel lectin blotting, increases total assay throughput, limits reagent and sample consumption, and is completed using one instrument. The assay comprises non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by online post-sizing SDS filtration and lectin-based affinity blotting. Important functionality is conferred through both device and assay advances that enable integration of nanoporous membranes flanking a central microchamber to create sub-nanoliter volume compartments that trap SDS-protein complexes and allow electrophoretic SDS removal with buffer exchange. Recapitulation of protein binding for lectin was optimized through quantitative assessment of SDS-treated green fluorescent protein. Immunoglobulin A1 aberrantly glycosylated with galactose-deficient O-glycans was probed in ~6 min using ~3 μL of sample. This new microfluidic lectin blotting platform provides a rapid and automated assay for the assessment of aberrant glycosylation.  相似文献   

4.
Summary The separation of glycoproteins as glycoforms with specific degrees of glycosylation has been a problem until now. A technique involving boronate affinity chromatography has been developed to separate a heterogeneous sample of neoglycoprotein, chymotrypsin modified with maltose via reductive amination, into individual fractions with different degrees of glycosylation. Low-molecular-mass polyhydroxyl compounds, such as tris(hydroxymethyl)aminomethane (Tris), pentaerythritol, and triethanolamine proved efficient eluents due to their ability to form strong tridentate complexes with the boronate ligand. Compounds leading to either; too strong interaction with the boronate ligand (e. g. D-sorbitol and polyvinly alcohol), or too weak or no interaction (e. g. dextran) were not suitable eluents. The study provided the opportunity to probe further into the effect of glycosylation on the function of glycoproteins.  相似文献   

5.
C-type lectin receptor (CLR) carbohydrate binding proteins found on immune cells with important functions in pathogen recognition as well as self and non-self-differentiation are increasingly moving into the focus of drug developers as targets for the immune therapy of cancer autoimmune diseases and inflammation and to improve the efficacy of vaccines. The development of molecules with increased affinity and selectivity over the natural glycan binders has largely focused on the synthesis of mono and disaccharide mimetics but glycan array binding experiments have shown increased binding selectivity and affinity for selected larger oligosaccharides that are able to engage in additional favorable interactions beyond the primary binding site. Here, a platform for the rapid preparation and screening of N-glycan mimetics on microarrays is presented that turns a panel of complex glycan core structures into structurally diverse glycomimetics by a combination of enzymatic glycosylation with a nonnatural donor and subsequent cycloaddition with a collection of alkynes. All surface-based reactions were monitored by MALDI-TOF MS to assess conversion and purity of spot compositions. Screening the collection of 374 N-glycomimetics against the plant lectin WFA and the 2 human immune lectins MGL ECD and Langerin ECD produced a number of high affinity binders as lead structures for more selective lectin targeting probes.  相似文献   

6.
Although lectin selection is gaining increasing acceptance as a tool for targeting glycosylation in glycoproteomics, most of the work has been directed at N-glycosylation. The work reported here focuses on the use of lectins in the study of O-glycosylation. The problem with using lectins for studying O-glycosylation is that they are not sufficiently specific. This paper reports that through the use of serial lectin affinity chromatography (SLAC) it is possible to select predominantly O-glycosylated peptides from tryptic digests of human serum. Jacalin is relatively specific for O-glycosylation but has the problem that it also selects high mannose N-type glycans. This problem was addressed by using a concanavalin A affinity column to first remove high mannose, hybrid-type and biantennary complex-type N-type glycans before application of the Jacalin columns. When used in a serial format, concanavalin A and Jacalin together provide essentially O-glycosylated peptides. The glycoprotein parents of glycopeptides were identified by deglycosylating the selected O-glycopeptides by oxidative elimination. These peptides were then separated by RPC and further analyzed using ESI-MS/MS and MALDI-MS/MS. Using this approach all the O-glycosylated sites in a model protein (fetuin) and over thirty glycoprotein parents from human serum were identified. It is concluded that a serial combination of Con A and Jacalin can be of utility in the study of O-glycosylation in glycoproteomics.  相似文献   

7.
Ahn YH  Ji ES  Shin PM  Kim KH  Kim YS  Ko JH  Yoo JS 《The Analyst》2012,137(3):691-703
A mass profiling method and multiple reaction monitoring (MRM)-based quantitative approach were used to analyze multiple lectin-captured fractions of human serum using different lectins such as aleuria aurantia lectin (AAL), phytohemagglutinin-L(4) (L-PHA), concanavalin A (Con A), and Datura stramonium agglutinin (DSA) to quantitatively monitor protein glycosylation diversity. Each fraction, prepared by multiple lectin-fractionation and tryptic digestion, was analyzed by 1-D LC-MS/MS. Semi-quantitative profiling showed that the list of glycoproteins identified from each lectin-captured fraction is significantly different according to the used lectin. Thus, it was confirmed that the multiplex lectin-channel monitoring (LCM) using multiple lectins is useful for investigating protein glycosylation diversity in a proteome sample. Based on the semi-quantitative mass profiling, target proteins showing lectin-specificity among each lectin-captured fraction were selected and analyzed by the MRM-based method in triplicate using each lectin-captured fraction (average CV 7.9%). The MRM-based analysis for each lectin-captured fraction was similar to those obtained by the profiling experiments. The abundance of each target protein measured varied dramatically, based on the lectin-specificity. The multiplex LCM approach using MRM-based analyses is useful for quantitatively monitoring target protein glycoforms selectively fractionated by multiple lectins. Thus through multiplex LCM rather than single, we could inquire minutely into protein glycosylation states.  相似文献   

8.
The interplay of mammalian lectins such as galectins with cellular glycoconjugates is intimately involved in crucial reaction pathways including tumor cell adhesion, migration or growth regulation. These clinically relevant functions explain the interest in designing glycoclusters with potent activity to interfere with lectin binding. In view of the perspective for medical applications the following objective arises: to correlate topological factors of ligand display most favorably to reactivity against endogenous lectins. To date, plant agglutinins have commonly been used as models. Properly addressing this issue we first prepared di- to tetravalent clusters from 2-propynyl lactoside under mild oxidative homocoupling conditions and using the Sonogashira palladium-catalyzed cross-coupling reaction with triiodobenzene or pentaerythritol cores. These products were tested for bioactivity in a competitive solid-phase assay using different labeled sugar receptors as probes, i,e. the beta-trefoil mistletoe lectin, the natural lactoside-binding immunoglobulin G fraction from human serum and three mammalian galectins from two subgroups. The lactose headgroups in the derivatives retained ligand properties. Differences in inhibitory capacity were marked between the galectins. In contrast to homodimeric proto-type galectins-1 and -7 significant inhibition of galectin-3 binding with a 7-fold increase in relative potency was observed for the trivalent compound. In comparison, the binding of the beta-trefoil mistletoe agglutinin was reduced best by tetravalent substances The result for galectin-3 was independently confirmed by haemagglutination and cytofluorometric cell binding assays. These data underline the feasibility of galectin-type target selectivity by compound design despite using an identical headgroup (lactose) in synthesis.  相似文献   

9.
Previously, we reported that the distribution of glycoproteins into the lectin displacement fractions of a multi-lectin affinity column was determined by the glycosylation patterns of the proteins. This distribution was observed by the sequential use of displacers specific to the lectins in the column. In this study we have evaluated the multi-lectin column (containing Concanavalin A, Wheat germ agglutinin and Jacalin lectin) to screen glycoproteins with known glycosylation pattern changes. The presence of a glycoprotein in a given displacer fraction was determined by LC-MS/MS analysis of a tryptic digest. We have used the enzyme neuraminidase to modify the oligosaccharide chains present in human transferrin, and used the enzymes, neuraminidase and fucosidase, to modify glycoproteins present in human serum. Then, by comparison with the untreated samples, we demonstrated a distribution shift of the enzyme-treated serum glycoproteins in the displacement fractions isolated from the multi-lectin column. The fractions were analyzed by a protein assay, Sequest rank comparison and peak area measurement from the extracted ion chromatogram. The results indicated that the multi-lectin affinity column (M-LAC) is sensitive to changes in the content of sialic acid and fucosyl residues present in serum glycoproteins, and has the potential to be used to screen serum proteins for glycosylation changes due to disease. In addition, the use of a glycosidase to induce specific structural changes in glycoproteins can support the development of multi-lectin column formats specific for detecting changes in the glycoproteome of certain diagnostic fluids and types of disease.  相似文献   

10.
Monolithic capillary columns with surface bound lectin affinity ligands were introduced for performing lectin affinity chromatography (LAC) by nano-liquid chromatography (nano-LC). Two kinds of polymethacrylate monoliths were prepared, namely poly(glycidyl methacrylateco-ethylene dimethacrylate) and poly(glycidyl methacrylate-co-ethylene dimethacrylate-co-[2-(methacryloyloxy)ethyl]trimethyl ammonium chloride) to yield neutral and cationic macroporous polymer, respectively. Two lectins including concanavalin (Con A) and wheat germ agglutinin (WGA) were immobilized onto the monolithic capillary columns. The neutral monoliths with immobilized lectins exhibited lower permeability under pressure driven flow than the cationic monoliths indicating that the latter had wider flow-through pores than the former. Both types of monoliths with immobilized lectins exhibited strong affinity toward particular glycoproteins and their oligosaccharide chains (i.e., glycans) having sugar sequences recognizable by the lectin. Due to the strong binding affinity, the monoliths with surface bound lectins allowed the injection of relatively large volume (i.e., several column volumes) of dilute samples of glycoproteins and glycans thus allowing the concentration of the glycoconjugates and their subsequent isolation and detection at low levels (approximately 10(-8) M). To further exploit the lectin monoliths in the isolation of glycoconjugates, two-dimensional separation schemes involving LAC in the first dimension and reversed-phase nano-LC in the second dimension were introduced. The various interrelated methods established in this investigation are expected to play a major role in advancing the sciences of "nano-glycomics".  相似文献   

11.
The design of multivalent glycoconjugates has been developed over the past decades to obtain high-affinity ligands for lectin receptors. While multivalency frequently increases the affinity of a ligand for its lectin through the so-called "glycoside cluster effect", the binding profiles towards different lectins have been much less investigated. We have designed a series of multivalent galactosylated glycoconjugates and studied their binding properties towards two lectins, from plant and bacterial origins, to determine their potential selectivity. The synthesis was achieved through copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) under microwave activation between propargylated multivalent scaffolds and an azido-functionalised carbohydrate derivative. The interactions of two galactose-binding lectins from Pseudomonas aeruginosa (PA-IL) and Erythrina cristagalli (ECA) with the synthesized glycoclusters were studied by hemagglutination inhibition assays (HIA), surface plasmon resonance (SPR) and isothermal titration microcalorimetry (ITC). The results obtained illustrate the influence of the scaffold's geometry on the affinity towards the lectin and also on the relative potency in comparison with a monovalent galactoside reference probe.  相似文献   

12.
Choi E  Loo D  Dennis JW  O'Leary CA  Hill MM 《Electrophoresis》2011,32(24):3564-3575
Alterations in protein glycosylation occur during development and progression of many diseases, hence glycomics and glycoproteomics have emerged as important tools in glycobiomarker discovery. High-throughput glycan profiling can now be achieved with the recent developments in MS-based techniques. To enable identification and rapid monitoring of glycosylation changes in serum proteins, we developed a semi-automated high-throughput glycoprotein biomarker discovery platform termed lectin magnetic bead array-coupled tandem mass spectrometry (LeMBA-MS) which includes (i) effective single-step serum glycoprotein isolation using a panel of 20 individual lectin-coated magnetic beads in microplate format, (ii) on-bead trypsin digestion, and (iii) nanoLC-MS/MS with lectin exclusion list. With use of appropriate sequence databases, LeMBA-MS can detect glycosylation changes regardless of the species. By spiking known amounts of titrated ovalbumin to a serum sample, we report nanomolar sensitivity, and linearity of response of LeMBA-MS using concanavalin A-coupled beads. Neuraminidase treatment led to reduction of binding to sialic acid-binding lectins. Interestingly, we found that desialylation caused increased binding of haptoglobin and hemopexin to mannose-specific lectins, pointing to the importance of identifying a signature of lectin-binding. High-throughput LeMBA-MS to generate glycosylation signatures will facilitate glycobiomarker discovery. LeMBA can be coupled to down-stream detection platforms for validation, making it a truly versatile platform.  相似文献   

13.
Aberrant protein glycosylation has been shown to be associated with disease processes and identification of disease-specific glycoproteins and glycosylation changes may serve as potential diagnostic and therapeutic biomarkers. However despite recent advances in proteomic-based biomarker discovery, this knowledge has not yet translated into an extensive mining of the glycoproteome for potential biomarkers. The major challenge for a comprehensive glycoproteomics analysis arises primarily from the enormous complexity and the large dynamic range in protein constituent in biological samples. Methods that specifically target glycoproteins are therefore necessary to facilitate their selective enrichment prior to their identification by MS-based analysis. The use of lectins, with selective affinities for specific carbohydrate epitopes, to enrich glycoprotein fractions coupled with modern MS, have greatly enhanced the identification of the glycoproteome. On account of their ability to specifically bind cell surface carbohydrates lectins have, during the recent past, found extensive applications in elucidation of the architecture and dynamics of cell surface carbohydrates, glycoconjugate purification, and structural characterization. Combined with complementary depletion and MS technologies, lectin affinity chromatography is becoming the most widely employed method of choice for biomarker discovery in cancer and other diseases.  相似文献   

14.
Interaction of lectins withYersinia pestis strains   总被引:1,自引:0,他引:1  
The ability of lectins to interact with Yersinia pestis strains isolated from rodent fleas and human biological fluids, obtained from different geographic areas, was examined. Lectins of Canavalia ensiformis, Ulex europaeus, Phaseolus vulgaris, and Triticum vulgaris, as well as a new autochthonous lectin of Swartzia pickellii of undefined specificity, were used. Most of the Y. pestis strains did not agglutinate with U. europaeus or C. ensiformis lectin. However, P. vulgaris lectin agglutinated suspensions of all the bacillus strains used. Fifteen of the 19 strains tested positive for assays using S. pickellii lectin. It is believed this is the first report of Y. pestis strain agglutination by lectins. A similar agglutination pattern was obtained for lectins with specificity for oligosaccharides containing N-acetylglucosamine and S. pickellii lectin, which did bind to the affinity matrix chitin, a polysaccharide of N-acetylglucosamine. The use of bacterial strains and commercial lectins of defined specificity may be an approach to providing evidence about the lectin binding sites of undefined monosaccharide specificity.  相似文献   

15.
Immobilization of polysaccharides (yeast mannan and gum arabic) on the macroporous poly(glycidyl methacrylate) monodisperse microspheres coated with silica (SiO2)‐containing amino groups on the surface was used to prepare affinity sorbents for lectin purification. The efficiency of isolating mannose specific Pisum sativum lectin was demonstrated on sorbent with immobilized yeast mannan and that of galactose specific Glycine hispida lectin on sorbent with immobilized gum arabic. The microspheres with immobilized polysaccharides can be used for selecting an affinity sorbent for purification of other mannose‐ and galactose‐specific lectins. In contrast to yeast mannan, the gum arabic immobilized on the microspheres possesses much narrower specificity and is suitable for purification of only those galactose specific lectins which interact well with l ‐rhamnose or l ‐arabinose. The synthesized macroporous particles are capable of immobilizing 50 mg of polysaccharide per 1 g of the matrix, which is 10 times higher than the capacity of epoxy‐activated Sepharose 6B. That makes it possible to obtain the same lectin quantity using a column of 10 times smaller volume. Another advantage of novel affinity sorbents comparing corresponding Sepharose gels is the possibility of sorbent drying after use. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
We introduce a novel combination of boronic acid affinity chromatography with lectin affinity chromatography, dubbed as boronic acid–lectin affinity chromatography (BLAC). Concanavalin A and wheat germ agglutinin lectins were mixed with the pesudo-lectin boronic acid to form the BLAC affinity column and their performance was evaluated with standard glycoproteins. Optimization of the binding and elution buffers for the BLAC system is described. The BLAC columns were employed to isolate glycoproteins of interest using both selective and/or combined elution.  相似文献   

17.
Oligosaccharides in therapeutic recombinant antibodies play important roles in regulation of various biological functions. To monitor the glycosylation profiles of antibody pharmaceuticals in the manufacturing process, a highly sensitive and specific method is required. We extended partial-filling techniques using lectins and exoglycosidases in capillary electrophoresis for the characterization of 8-aminopylene-1,3,6-trisulfonic acid labeled N-linked oligosaccharides derived from the therapeutic antibody rituximab. In the lectin-filling method, Galb1–4GlcNAc-specific Erythrina cristagali agglutinin, a1, 6-linked Fuc-specific Aleuria aurantia lectin and Neu5Aca2–3Gal-specific Maackia amurensis lectin were used. The oligosaccharides migrated through the lectin plug during separation; the changes in separation profiles were observed according to the interaction with the lectins. The glycosidase-filling method allowed rapid digestion as suggested by the electropherograms. Partial-filling CE methods can avoid tedious hands-on procedures such as overnight incubation and optimization reaction condition with lectins and exoglycosidases. Combination of these partial-filling capillary electrophoresis methods makes the characterization of oligosaccharide profiles of therapeutic antibodies easier and faster.  相似文献   

18.
Counterflow isotachophoresis on cellulose acetate membranes of human alpha-fetoprotein (AFP) was performed with concanavalin A, lentil lectin, and castor bean lectin driven by electroendosmotic counterflow. This counterflow caused a uniform stream of lectin to migrate towards the cathode against AFP with carrier ampholytes in steady-state position. Retardation of microheterogeneity forms bound to lectins was observed, giving results comparable to standard crossed affinity immunoelectrophoresis. Smaller amounts of lectins and more diluted samples of AFP could be used in the described method.  相似文献   

19.
Boronate affinity adsorption is uniquely selective for cis-diol-containing molecules. The preparation and application of boronate affinity materials has attracted much attention in recent years. In this work, a high-capacity boronate affinity adsorbent was prepared by surface-initiated reversible addition–fragmentation chain transfer polymerization (SI-RAFT). Commercial aminated poly(glycidyl methacrylate) (PGMA) microspheres were modified with the chain transfer agent (CTA) S-1-dodecyl-S-(α,α-dimethyl-α-acetic acid)trithiocarbonate (DDATC). Boronate-affinity adsorbents were then prepared via SI-RAFT polymerization employing 3-acrylamidophenylboronic acid (AAPBA) as the monomer. The Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption and desorption measurements have proven the successful grafting of AAPBA on PGMA microspheres surface. The boronate affinity adsorbents thus prepared possess much higher adsorption capacity (99.2 µmol/g of adenosine) and both faster adsorption and desorption speed towards ribonucleosides, the adsorption and desorption could be completed in 2 min. The high selectivity of the adsorbents to ribonucleosides was verified in the presence of a large excess of deoxynucleosides. The boronate affinity adsorbents were then employed for sample pretreatment before HPLC analysis of ribonucleosides in serum. The ribonucleosides were effectively enriched by boronate affinity dispersive solid-phase extraction (BA-DSPE), with high mass recoveries and good precision. The simultaneous determination of uridine and guanosine in calf serum was achieved by utilizing the standard addition method, their contents were determined to be 170 ± 11.6 ng/mL and 39.6 ± 4.4 ng/mL respectively. The results proved that the prepared boronate affinity materials could be applied for sample pretreatment of cis-diol containing molecules in biological samples.  相似文献   

20.
Partial-filling affinity capillary electrophoresis has been applied to the simultaneous analysis of interactions between glycoprotein oligosaccharides and certain plant lectins. A lectin solution and a mixture of glycoprotein-derived oligosaccharides labeled with 8-aminopyrene-1,3,6-trisulfonic acid were introduced to a neutrally coated capillary in this order, and separated by application of a negative voltage. Interaction of a lectin with each oligosaccharide in the mixture was observed as the specific retardation or dissipation of peaks, in addition to the size/charge separation of oligosaccharides by zone electrophoresis in the remainder (≈90%) of the capillary. The strength of the interaction with lectin was controlled by introducing an appropriate volume of lectin solution. Application of various specificities of lectins indicated characteristic migration profiles of the oligosaccharides. Moreover, sequential injection of four lectins (Maachia amurensis mitogen, Sambucus sieboldiana agglutinin, Erythrina cristagalli agglutinin, Aleuria aurantia lectin) induced complete dissipation of complex-type oligosaccharides and enabled specific determination of the presence of high-mannose oligosaccharides without the interference or alteration of the electropherogram in porcine thyroglobulin. This method was also applied to determine the binding constants of ovalbumin-derived oligosaccharides to wheat germ agglutinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号