首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
以过氧化对苯二甲酸二叔丁酯为引发剂, 以一次投料方式, 采用溶液聚合法合成了苯乙烯-N-苯基马来酰亚胺-马来酸酐三元共聚物. 通过控制单体配比, 实现产物中N-苯基马来酰亚胺质量分数在48%~63%之间可调. 采用FTIR, 1H NMR, 13C NMR和GPC技术对三元共聚物的化学组成、链序列结构和分子量进行了测试. 利用FOX方程计算的共聚物NPMI含量与1H NMR核磁测试结果一致. DSC和TGA测试的结果表明, 当N-苯基马来酰亚胺质量分数>48%时, 共聚物的玻璃化转变温度(Tg)从202 ℃提高到215 ℃, 5%热失重温度高于363 ℃, 所以三元聚合物是一种优异的聚合物耐热剂.  相似文献   

2.
通过己内酯(CL)和甲基丙烯酸二甲氨基乙酯(DMAEMA)的杂化聚合制备了主链含酯键结构单元的聚甲基丙烯酸二甲氨基乙酯的共聚物,并通过核磁(~1H-NMR)、凝胶渗透色谱(GPC)、示差扫描量热仪(DSC)等对聚合物的结构和性能进行了表征.结果表明,膦腈碱t-Bu P4能高效催化CL和DMAEMA的杂化聚合,得到含CL和DMAEMA 2种结构单元的刺激响应性可降解共聚物.该共聚物只存在一个玻璃化转变温度且共聚物组成与单体投料比接近.GPC数据表明共聚物的数均分子量范围为1.63×10~4~2.47×10~4,分子量分布为2.11~2.54.酯键的引入赋予了聚合物良好的降解性能,同时使其低临界相转变温度(LCST)从52.6℃降到了44.5℃.TEM结果表明得到的共聚物能够在水中形成平均直径约60 nm的胶束.  相似文献   

3.
氯乙烯/N-取代马来酰亚胺共聚竞聚率及共聚物组成   总被引:6,自引:0,他引:6  
研究了氯乙烯(VC)与多种N-取代马来酰亚胺的溶液共聚合,求得各对单体的竞聚率.结果表明,各种马来酰亚胺的竞聚率都远高于VC的竞聚率,即N-取代马来酰亚胺单体的活性均比VC单体活性高.计算得到N-取代马来酰亚胺Q和e值.由于苯环的共轭效应,N-苯基及N-取代苯基马来酰亚胺具有较大的Q值.各对单体的e值差别较大,表明有形成交替共聚物的倾向.此外,还考察了聚合过程中共聚物组成的变化,用递推法预测了这类体系共聚物瞬时和累积组成随转化率的变化.  相似文献   

4.
在合成松香基手性试剂(4a~4f)的过程中,首次发现N-(1-萘基)-马来海枞酸二酰亚胺(4f)的位阻异构现象,而与其结构类似的N-苯基-马来海枞酸二酰亚胺(4a)、N-(2-羧基苯基)-甲酯化马来海松酸二酰亚胺(4b)、N-(2-硝基苯基)-甲酯化马来海松酸二酰亚胺(4c)、N-(2-氯苯基)-甲酯化马来海松酸二酰亚胺(4d)和N-[1-(2-氨基)-苯基]-甲酯化马来海松酸二酰亚胺(4e)则没有该位阻异构现象.化合物4a~4f的结构通过核磁共振、质谱和红外光谱等方法进行了表征.采用变温条件下的1H NMR谱图研究了化合物4f的位阻异构化动力学特性.  相似文献   

5.
N-烷基与N-芳基马来酰亚胺,是属于1,2-二取代乙烯结构的单体,文献[1—3]报道这类单体能进行自由基聚合与共聚合。但对于N-(对甲苯基)马来酰亚胺(PMPMI)的自由基聚合与共聚合中,溶剂对聚合物分子量的影响尚未有详细报道。至于N-烷基与N-芳基马来酰亚胺分别和丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)的共聚合也有一些报道,由竞聚率的测定,计算出N-芳基马来酰亚胶的e值是2.12—2.29和1.35—1.75。表明N-芳基马来酰亚胺是一缺电子的单体,即负性单体。我们研究室曾报道N,N-二甲基-对甲苯胺(DMT)和其它芳胺能光诱导引发负性单体丙烯腈聚合。PMP-  相似文献   

6.
分别通过N-(p-羟基苯基)甲基丙烯酰胺与N-苯基马来酰亚胺、N-苯基甲基丙烯酰胺与N-(p-羟基苯基)马来酰亚胺的共聚合,制备了两种聚合物树脂聚N-(p-羟基苯基)甲基丙烯酰胺共N-苯基马来酰亚胺(poly(HPMA-co-PMI))和聚N-苯基甲基丙烯酰胺共N-(p-羟基苯基)马来酰亚胺(poly(MPA-co-HPMI)).结果表明,这两种聚合物都是按1∶1的摩尔比交替共聚的,它们都具有良好的溶解性、成膜性和亲水性,并且它们的玻璃化温度Tg都在280℃以上.将它们分别与感光剂2,1,5-磺酰氯的衍生物、助剂二苯甲酮等复配成两种紫外正型光刻胶,初步光刻实验表明,其最大分辨率都可以达到1μm,并且都可以耐270℃的高温.  相似文献   

7.
研究了二硫代苯甲酸酯存在下偶氮二异丁腈引发苯乙烯(St)、St与N-对羟基苯基马来酰亚胺(HPM)、St与N-对(2-氯/溴丙酰氧基)苯基马来酰亚胺(CPPM/BPPM)的可逆加成-断裂链转移(RAFT)均/共聚,聚合物的结构由紫外-可见光(UV-Vis)与凝胶渗透色谱(GPC)表征.结果表明,St的RAFT均聚以及St与N-取代马来酰亚胺的RAFT共聚均呈现活性聚合特征,分子量随着转化率上升而增加,且分子量分布较窄.对于St的RAFT均聚,由于双基终止,聚苯乙烯(PSt)链中"戴帽效率"随着转化率上升逐渐下降.对于St与N-取代马来酰亚胺的RAFT共聚合,电荷转移复合物的形成显著地提高了共聚反应速度,并促进交替结构的形成.随后进行了以P(St-alt-BPPM)引发St的原子转移自由基聚合以制备梳型PSt,结果表明在强极性溶剂中进行的聚合过程失去可控性,所得产物分子量极宽,而在本体聚合中所得聚合物分子量相对较窄,有一定的可控性.  相似文献   

8.
官能团化己内酯与丙交酯无规共聚物的合成与降解性能   总被引:1,自引:1,他引:0  
研究了官能团化新型己内酯单体的合成及其与丙交酯无规共聚物的降解性能. 首先, 环己酮和N-异丙基丙烯酰胺通过Michael加成反应合成了2-(N-异丙基酰胺乙烯基)-环己酮; 然后, 以间氯过氧化苯甲酸为氧化剂, 通过Baeyer-Villiger氧化反应, 制备带有酰胺官能团的己内酯单体6-(N-异丙基酰胺乙烯基)-ε-己内酯; 最后, 在异辛酸亚锡[Sn(Oct)2]的催化下与丙交酯开环聚合, 得到新型己内酯与丙交酯的无规共聚物. 采用1H NMR, SEC和DSC表征了聚合物的结构和热力学性能. 同时通过黏度法、失重法和SEM对该聚合物的降解性能进行了表征. 结果表明, 该共聚物的降解速率明显增快, 材料降解2个月后, 材料的质量损失达到28.1%, 特性黏度降低近40%.  相似文献   

9.
N-取代的马来酰亚胺是缺电子的负性单体[1],它很容易进行自由基聚合或共聚合[2,3],特别是能够与负性单体如丙烯腈共聚合[4].如果在缺电子的N-取代马来酰亚胺单体中引入给电子生色基团,即给电子生色基团与受电子基团于一体,能够表现出较好的光化学性能[5].本文中报道了聚[N-(4-二甲氨联苯基)马来酰亚胺]及其单体的合成,聚合物的光化学性能将在另文报道.  相似文献   

10.
研究了少量N-[4-(α-溴代异丁酰氧基)苯基]马来酰亚胺(BiBPM)与大量甲基丙烯酸-N,N-二甲氨基乙酯(DMAEMA)在CuBr/N,N,N′,N″,N″-五甲基二乙烯三胺(PMDETA)催化下的自缩合原子转移自由基共聚合(SCATRCP).分别利用气相色谱、三检测凝胶渗透色谱测定了聚合反应过程中DMAEMA的转化率、所得聚合物(PDMAEMA)的分子量与分子量分布、绝对分子量和特性黏数等随着反应时间的变化.结果表明,在以上聚合过程中,PDMAEMA的分子量随着聚合的进行而不断上升,但是支化度持续下降.由此可知,在聚合早期就形成了低分子量而高支化度的PDMAEMA,在聚合后期,主要进行DMAEMA的ATRP,导致支化度随着分子量的上升而逐渐下降.  相似文献   

11.
合成了苯乙烯(St)与 N-对位取代基马来酰亚胺的3种二元共聚物乳液.在苯乙烯与N-对位取代苯基马来酰亚胺(N-p-RPhMI)的最大共聚比内,通过种子滴加乳液聚合制得高稳定性、高固含量(40%)、低粘度的共聚物乳液.研究了 N-p-RPhMI 苯环对位上取代基团对共聚物乳液的性能以及共聚物热性能影响.结果表明:N-p-RPhMI 的加入提高了乳液的产率,并且随着取代基团极性的增强,乳液产率提高,乳胶粒的平均粒径增大,乳液的表观粘度降低;共聚物的热分解温度随着取代基团极性的增加而提高,但取代基极性对共聚物的玻璃化转变温度(Tg)的影响明显.同时,St/N-对甲氧基马来酰亚胺(N-p-MOPhMI)体系中助溶剂的加入对共聚物乳液性能影响很大,使共聚物的热起始分解温度升高,但对共聚物的 Tg 基本无影响.  相似文献   

12.
乙烯基单体/N-取代马来酰亚胺共聚合动力学   总被引:4,自引:0,他引:4  
详细研究了聚合温度、引发剂用量、单体配比对苯乙烯(St)/N-苯基马来酰亚胺(PMI)共聚合动力学的影响.对St、甲基丙烯酸甲酯(MMA)和丙烯腈(AN)等单一或混合单体与PMI、N-环己基马来酰亚胺(ChMI)和N-邻氯苯基马来酰亚胺(o-CPMI)的共聚合进行了研究,并讨论了单体结构的影响.  相似文献   

13.
采用核磁共振氢谱, 研究了N-苯基马来酰亚胺(NPMI)与对氯甲基苯乙烯(PCMS)在氘代氯仿中的络合性能. 以PCMS作为引发剂单体, 通过原子转移自由基聚合(ATRP)引发NPMI-PCMS电子转移络合物(CTC)进行活性可控超支化共聚合. 考察了单体初始摩尔分数对共聚物组成和其玻璃化转变温度的影响, 用Kelen-Tudos法计算得到两种单体的竞聚率分别为 rNPMI=0.11和rPCMS=0.25. 结果表明, 当单体配比fNPMI=0.4~0.7时, 共聚物具有交替结构, 其耐热性随着NPMI含量的增加而提高. 此外还考察了溶剂、聚合温度等对共聚合反应动力学的影响. 并进一步用所得超支化交替共聚物作为大分子引发剂, 引发甲基丙烯酸甲酯(MMA)聚合, 制得了多臂超支化接枝共聚物 poly(NPMI-co-PCMS)/poly(MMA).  相似文献   

14.
原子转移自由基聚合合成耐热性共聚物   总被引:3,自引:0,他引:3  
自 1 995年第一篇有关过渡金属催化的原子转移自由基聚合 (ATRP)论文发表以来 ,国内外许多研究者都纷纷开展这方面的工作 ,人们已用该法合成了各类指定结构的聚合物[1~ 6] ,选用合适的引发剂比较容易合成出具有良好加工流动性的星型和超支化聚合物[2 ,3,6] .N 取代马来酰亚胺由于其环状结构而被广泛用于自由基共聚合制备耐热性聚合物[7~ 9] ,但N 取代马来酰亚胺的引入将降低聚合物的加工流动性 ,若能实现含N 取代马来酰亚胺单体结构的可控ATRP共聚合 ,利用多官能团引发剂如四溴甲基苯合成出星型耐热性共聚物 ,将可望同时改善聚…  相似文献   

15.
N-取代马来酰亚胺聚合物中的酰亚胺环为平面五元环结构,阻碍了酰亚胺单元绕聚合物主链的旋转,限制了聚合物主链的运动,使聚合物的热性能和化学稳定性得到了很大的提高.近些年来,有关N-取代马来酰亚胺均聚合研究的报道已经有很多,但大多采用自由基聚合方法和负离子聚合方法,采用配位催化聚合方法很少.  相似文献   

16.
采用递推方法成功地预测了乙烯基单体/N-苯基马来酰亚胺(PMI)共聚物组成随转化率的变化.选择共聚单体种类和用量,控制和优化共聚物组成.针对氯乙烯(VC)/PMI/丙烯腈(AN)三元悬浮共聚合特殊体系的聚合特点和工艺,得到该三元体系的单体选择范围.  相似文献   

17.
氯乙烯/N-苯基马来酰亚胺共聚物的玻璃化温度研究   总被引:1,自引:0,他引:1  
研究了单体配比、聚合温度、转化率和加料方式对氯乙烯(VC)/N-苯基马来酰亚胺(PMI)共聚物的玻璃化温度的影响.用序列模型模拟了玻璃化温度与转化率的关系,可较好地反映变化趋势.分批加料可使共聚物的耐热性能提高,却使其颗粒特性变差.  相似文献   

18.
N-[4-(N''''-取代酰胺基)苯基]马来酰亚胺的合成与表征   总被引:3,自引:0,他引:3  
N-取代马来酰亚胺(RMI)是一类重要的新型树脂改性单体,由于其具有刚性五元环的结构,能显著提高聚合物的玻璃化温度和热分解温度,改善材料的工艺性和力学性能。但文献对于在N-取代基团中引入杂环结构的单体合成报道很少。本文报道了由顺丁烯二酸酐、8-氨基喹啉、对甲苯胺为主要原料合成N-[4-(N’-8-喹林基)苯甲酰胺基]马来酰亚胺(QPM)和N-[4-(N’-4-甲基苯基)苯甲酰胺基]马来酰亚胺(TPM)的方法,  相似文献   

19.
用开环聚合法合成了端基分别为巯基和马来酰亚胺基团的聚己内酯,利用马来酰亚胺与巯基的迈克尔加成反应和巯基之间的偶联反应,合成了两种端基为谷胱甘肽的聚己内酯(GS-PCL和GSS-PCL),利用核磁共振氢谱和凝胶渗透色谱表征了两亲性聚己内酯的结构.研究了这两种聚己内酯在水中的聚集行为,发现这两种聚已内酯都可在一定pH值下聚集形成球形胶束,胶束的形态、大小等受pH影响;同时,由GSS-PCL形成的聚集体还表现出氧化还原敏感性.  相似文献   

20.
一种新型紫外正型光刻胶成膜树脂的制备及光刻性能研究   总被引:1,自引:0,他引:1  
本文合成了N-(p-羧基苯基)甲基丙烯酰胺单体,并将其与N-苯基马来酰亚胺共聚得到共聚物聚N-(p-羧基苯基)甲基丙烯酰胺共N-苯基马来酰亚胺(poly(NCMA-co-NPMI)).将此共聚物作为成膜树脂,与感光剂、溶剂等复配得到一种新型耐高温紫外正型光刻胶.本文探讨了该光刻胶的最佳配方组成和最佳光刻工艺.最佳配方组成为:15%—20%成膜树脂,4.5%—6%感光剂和70%—80%溶剂;最佳光刻工艺为:匀胶30 s(4000 rpm),前烘4 min(90℃),感度为30—35mJ/cm2,在0.2%TMAH溶液显影10 s和后烘2 min(90℃).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号